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1 — Infrastructure Description
The world’s 2 billion smartphones and 4 million apps have become a large part of most people’s computing
experiences. Most apps need to persist structured data, a task frequently performed using an embedded
database such as SQLite. These are heavily used, with Android smartphones generating an average of
more than two SQLite queries per second [48] per phone. Unsurprisingly, mobile app usage of embedded
databases is quite different from the workloads experienced by database servers supporting websites or
big data applications. For example, while database servers are frequently tested and tuned for continuous
high-throughput query processing, embedded databases experience lower-volume but bursty workloads
produced by interactive use. As another example, enterprise database servers are frequently provisioned
to have exclusive access to an entire machine, while apps using embedded databases compete for shared
system resources with other apps and may be affected by system-wide policies that attempt to conserve
limited energy on battery-constrained mobile devices. So while the fundamental challenges experienced by
mobile apps using embedded databases — minimizing energy consumption, latency, and disk utilization
— are familiar ground for database researchers, the specific tradeoffs produced in this domain of pocket-scale
data are far less well understood.

To date, there have been some initial explorations of small-, personal-, or pocket-scale data management,
both in academia and by industry:

• Arnab Nandi’s group at Ohio State is exploring issues of query specification, database responsiveness,
and database performance on smartphones and tablets.

• Saarland University’s Janiform Document project explores interactive manuscripts that include embed-
ded, query-able research data and visualizations.

• Oracle, SAP Labs, Facebook, LMDB, SQLite, and MongoDB are all actively engaged in research on and
development of embedded database software.

• The Presto group at Ohio State is exploring responsiveness issues in Android caused by data-flow limi-
tations.

• The DAS Lab at Harvard’s work on adaptive data management considers the challenges of specializing
databases for small data.

• The POCKETDATA project at the University at Buffalo is exploring how smartphone apps interact with
embedded-databases.

There is clearly interest in data management challenges that arise in small-scale data management. Unfortu-
nately, unlike the largely homogeneous workloads and platforms that are standard in research on classical
enterprise databases, this new POCKETDATA setting is far more diverse. Data access patterns are extremely
bursty and can vary wildly by user, time of day, mix of installed apps, network accessibility, and many
other factors. Platform properties such as RAM, persistent storage, CPU performance, and network band-
width also exhibit extreme variations across phones, sometimes by multiple orders of magnitude. Resource
availability can also vary; Some users keep their phones constantly charged, while others go multiple days
without plugging their phones in.

The heterogeneity of the POCKETDATA setting makes it challenging for researchers to understand the trade-
offs and requirements of the setting. This lack of clear high-level goals, in turn, makes it difficult to clearly
identify successful research contributions. Unfortunately, pinning down specific goals first requires a con-
certed effort to gather (and analyze) traces of data usage patterns from real-world settings, creating a high
barrier to entry for new researchers. Lacking the resources necessary to better understand and adapt to the
POCKETDATA scale, research efforts in the area are presently limited.

Target Community Research on mobile devices and the more general space of the internet of things (IoT)
is cross cutting, intersecting communities that work on data management systems, real-time and embed-
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ded devices, programming languages, and operating and mobile systems. We believe research involving
POCKETDATA also lies at the intersection of these communities. Specialized database systems for embed-
ded devices are re-emerging as an interesting topic in the database community. As embedded processors
become more capable, with larger amounts of main memory available (e.g. Intel’s Edison platform), there
is a growing push from the embedded systems and the real-time communities to explore larger software ca-
pabilities, including database systems and query processing systems in embedded hardware deployments.
The programming language community is exploring domain specific languages for specialized query pro-
cessing. The mobile community is continually exploring how to push the envelope on smartphone based
computing, whether via power aware mechanisms, or through more adaptive systems. Many of these so-
lutions use mobile databases as their fundamental computation engine (e.g. the ‘maybe’ system developed
at UB) or must consider the performance characteristics of database systems (e.g. power modeling).

This proposal aims to create a community research infrastructure around our POCKETDATA toolchain to
enable a myriad of research activities for the above mentioned communities. Additionally, in this planning
grant, we will explore the precise needs of these communities to ensure an infrastructure that has broad
applicability. We will reach out to researchers in closely related areas including Internet of Things, Adaptive
Data Management, Sensor Networks, and help them to explore how POCKETDATA can help to improve
their research. As part of these outreach efforts, we will provide resources that will simultaneously support
researcher’s existing projects, while also helping to enable new projects with a focus on POCKETDATA.

During this planning grant we will focus our efforts in three key areas:

1. Growth of the Mobile Embedded Database community: We have established an initial community of
interested CISE researchers for POCKETDATA from both academia and industry. We believe that this
community shows that there is sufficient interest within CISE to pursue our proposed POCKETDATA
infrastructure. However, for long term success we would like to expand this community to ensure that
the infrastructure meets the needs of the broader community and not just a specific research niche.

2. Expansion to IoT: Our preliminary efforts have focused on questions relating to POCKETDATA in the
mobile domain, specifically Android. Although a POCKETDATA infrastructure based solely in Android
is valuable, we believe a more comprehensive infrastructure must take into account recent developments
in IoT. There are similarities between how mobile applications leverage embedded databases and how
proposed IoT applications would use embedded databases, specifically in the areas of personal health
care devices that aggregate and summarize a user’s personal data and smart city deployments where
small devices process data before sending relevant data for more centralized big data analytics. We
propose to expand and modify our POCKETDATA infrastructure to meet the needs of IoT community.

3. Workshops and Tutorials: To facilitate engagement with the broader CISE community and to develop an
initial community for POCKETDATA, we proposed to run workshops and tutorials co-located with major
conferences in the database, systems, real-time systems, and programming language communities. Our
budget includes funding for travel to such conferences to host workshops and tutorials. This will also
enable the PIs to receive valuable feedback on the needs of the community in designing and building
out the POCKETDATA infrastructure.

A successful planning grant will enable us to proceed with the development of a full POCKETDATA infras-
tructure proposal. Concretely, the following three resources will be developed as part of the full infrastruc-
ture proposal:

1. Datasets and Traces: We will provide the POCKETDATA community with the data and statistics neces-
sary to understand and emulate embedded database usage on smartphones and similar devices. Our
preliminary study [48] tracked usage patterns for SQLite on 11 smartphones “in-the-wild” for a period
of 1 month. The study clearly illustrates the uniqueness of these usage patterns and we have already
made our source data and the results of our analysis freely available. We presently have further data
on approximately 170 phones for a period of several months. If funded, we would be able to provide
researchers with larger, more extensive traces of smartphone embedded database usage, as well as more
comprehensive analyses summarizing those datasets.

2. Standards and Benchmarks: We will create a toolkit to establish a set of standards for evaluating re-
search efforts on POCKETDATA for both Android and IoT. The POCKETDATA setting requires unique
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metrics that can be difficult to reliably measure on the Android platform. The toolkit will include instru-
mentation for Android that will make it easier for researchers to measure performance through rarely
used metrics like availability of idle time, thread scheduling, power consumption, and other measures
that can be hard to gather reliably on the Android platform like CPU and memory usage for specific
libraries. Second, to standardize comparisons across different research efforts, the toolkit will include
a benchmark suite. This benchmark will established clearly defined metrics for evaluating data man-
agement solutions. Moreover, by making it extensible, the benchmark will act a clearinghouse for app
behaviors discovered in the wild and changing database requirements.

3. Visualization: We will create a data visualization tool and associated queries to help researchers under-
stand and navigate the data. The raw traces we plan to offer researchers are very large. Moreover, the
rich structure and variability of SQL queries generated by smartphone apps does not admit traditional
indexing strategies often used for analytics. By providing database-driven tools that aid in the analysis
and visualization of the resulting queries, we will enable researchers to more quickly and accurately
explore relevant characteristics of real-world POCKETDATA workloads.

Qualifications of the PIs: The PIs bring cross-cutting expertise from three of the main communities our
proposed POCKETDATA infrastructure would impact. All three have a record of successful collabora-
tion [48, 14], and PIs Kennedy and Ziarek have been working together for the last three and a half years on
adaptive indexing [52, 3, 53]. PI Kennedy’s expertise covers databases, incremental computation [5, 47, 58],
uncertain data management [51, 45, 94], online aggregation [46, 50], and compiler design [47, 5, 58]. PI
Ziarek’s expertise covers programming languages [96, 95], real-time systems [9, 91], virtual machines [75,
76], and compiler design [84, 97]. PI Challen’s expertise comprises smartphone systems, including net-
working [81, 82, 80], architectural [8], energy management [62, 61] and security [25] aspects.

1.1 — Datasets
In a preliminary study [48], we instrumented Android smartphones being used as the primary device of 11
UB students, faculty and staff for a period of one month. The SQLite embedded database included as part
of the Android platform was modified to log a trace of all SQL statements executed, along with metadata
such as the number of rows returned, time taken, and the application process that issued the statement. To
protect participant privacy, our instrumentation removed as much personally-identifying information as
possible and recorded prepared statement arguments only as hash values. With participant permission, we
have made these traces publicly available [48].

We conducted a preliminary analysis to summarize these traces, the key parts of which we summarize here
to provide a sense of the type of information that we will make available to the POCKETDATA community.
We captured approximately 45 million statements executed by SQLite over the 1 month period. As might be
expected, SELECT forms almost three quarters of the workload by volume. UPSERT statements (i.e., INSERT
OR REPLACE) form a similarly substantial 16% of the workload — more than simple INSERT and UPDATE

statements combined. Also of note is a surprising level of complexity in DELETE statements, many of which
rely on nested sub-queries when determining which records to delete.

Of the 45 million queries analyzed, 33.47 million were read-only SELECT queries. Figure 1 shows the distri-
bution of SELECT queries by number of tables accessed by the query, as well as the maximum level of query
nesting. Nesting includes from-nesting (e.g., SELECT ... FROM (SELECT ...)), as well as expression-
nesting (e.g., SELECT ... WHERE EXISTS (SELECT ...)). Even at this coarse-grained view of query com-
plexity, the read-only portion of the embedded workload distinguishes itself from existing TPC bench-
marks. Like TPC-C [22], the vast majority of the workload involves simple, small requests for data that
touch a small number of tables. 29.15 million, or about 87% of the SELECT queries were simple select-
project-join queries. Of those, 28.72 million or about 86% of all queries were simple single-table scans or
look-ups. In these queries, which form the bulk of SQLite’s read workload, the query engine exists simply
to provide an iterator over the relationally structured data it is being used to store. Conversely, the work-
load also has a tail that consists of complex, TPC-H-like [24] queries. Several hundred thousand queries
involve at least 2 levels of nesting, and over a hundred thousand queries access 5 or more tables. As an
extreme example, our trace includes 10 similar SELECT queries issued by the Google Play Games Service,
each of which accesses up to 8 distinct tables to combine and summarize developer-provided game state,
user preferences, device profile meta-data, and historical game-play results from the user.
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Figure 1: SELECT queries by (a) number of tables accessed and (b) maximum nesting depth.

Join Width
Where Clauses 1 2 3 4 6 Total

0 1,085,154 1,085,154
1 26,932,632 9,105 26,941,737
2 1,806,843 279,811 5,970 2,092,624
3 384,406 80,183 29,101 1 493,691
4 115,107 70,891 10,696 939 197,633
5 28,347 15,061 1,162 17 11 44,598
6 212 524 591 471 3 1,801
7 349 22,574 333 1,048 8 24,312
8 35 18 6 59
9 541 2,564 4 3,109
10 159 159
11 545 545

Total 30,353,789 478,708 50,417 2,480 28 30,885,422

Figure 2: Number of simple look-up queries subdivided by join width (number of tables) and number
of conjunctive terms in the WHERE clause.

The majority of SELECT queries we encountered fall into a class of simple look-up queries, defined as any
SELECT query that consists exclusively of selections, projections, joins, limit, and order by clauses, and
which does not contain any nested sub-queries or unions. Figure 2 shows queries of this class, broken
down by the number of tables involved in the query (Join Width) and the complexity of the where clause,
as measured in number of conjunctive terms (Where Clauses). For example, consider a query of the form:
SELECT R.A FROM R, S WHERE R.B = S.B AND S.C = 10 This query would have a join width of 2 (R, S)
and 2 conjunctive terms (R.B = S.B and S.C = 10). The first column of this table indicates queries to a
single relation. Just over 1 million queries were full table scans (0 where clauses), and just under 27 million
queries involved only a single conjunctive term. This latter class constitutes the bulk of the simple query
workload, at just over 87% of the simple look-up queries. Single-clause queries appear to be the norm.

Over the course of the one-month trace we observed 179 distinct apps, varying from built-in Android
applications such as Gmail or YouTube, to video players such as VLC, to games such as 3 Kingdoms. Figure 3a
shows the cumulative distribution of apps sorted by the number of queries that the app performs. The
results are extremely skewed, with the top 10% of apps each posing more than 100 thousand queries over
the one month trace. The most query-intensive system service, Media Storage was responsible for 13.57
million queries or just shy of 40 queries per minute per phone. The most query-intensive user-facing app
was Google+, which performed 1.94 million queries over the course of the month or 5 queries per minute.
At the other end of the spectrum, the bottom 10% of apps posed as few as 30 queries over the entire month.
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Figure 3: Breakdown of SELECT queries by app. (a) Cumulative distribution of applications by the num-
ber of SELECT queries issued (note the logarithmic scale). (b) Cumulative distribution of applications by
the percent of the app’s SELECT queries that are key value queries (full table scans or exact key look-ups).

C
D

F

Number of Data Manipulation Statements

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

100 101 102 103 104 105 106 107

(a)

C
D

F

Read/Write Ratio (100% = All Reads)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(b)

Figure 4: App-level write behavior. (a) Cumulative distribution of applications by number of data ma-
nipulation statements performed (note the logarithmic scale). (b) Cumulative distribution of applica-
tions by read/write ratio.

We noted above that a large proportion of SELECT queries were exact look-ups; Indeed many applications
running on the device are using SQLite as a simple key-value store. As seen in Figure 3b, for 24 apps
(13.4%), we observed only queries that would have been supported by a trivial key-value API for the full
span of the month-long trace.

Figure 4a illustrates app-level write workloads, sorting applications by the number of INSERT, UPSERT,
UPDATE, and DELETE operations that could be attributed to each. The CDF is almost perfectly exponential,
suggesting that the number of write statements performed by any given app follows a long-tailed distribu-
tion, a feature to be considered in the design of a pocket data benchmark.

Figure 4b breaks apps down by their read/write ratio. Surprisingly, 25 apps (14% of the apps seen) did
not perform a single write over the course of the entire trace. Manual examination of these apps suggested
two possible explanations. Several apps have reason to store state that is updated only infrequently. For
example, JuiceSSH or Key Chain appear to use SQLite as a credential store. A second, far more interesting
class of apps includes apps like Google Play Newsstand, Eventbrite, Wifi Analyzer, and TuneIn Radio Pro, all
of which have components that query data stored in the cloud. We suspect that the cloud data is being
encapsulated into a pre-constructed SQLite database and being pushed to, or downloaded by the client
applications. This type of behavior might be compared to a bulk ETL process or log shipment in a server-
class database workload, except that here, the database has already been constructed. Pre-caching through
database encapsulation is a unique feature of embedded databases, and one that is already being used in a
substantial number of apps.
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Figure 5: Per-App Summary Statistics for Android SQLite Queries. Distributions of (a) inter-query
arrival times, (b) query runtimes, and (c) rows returned per query.

Figure 5 shows query interarrival times, runtimes, and returned row counts for ten of the most active
SQLite clients. As seen in Figure 5a, a 0.01Hz periodicity in arrival times is common to all applications,
suggesting filesystem locking as a culprit. Two of the most prolific SQLite clients, Google Play services and
Media Storage appear to be very bursty: 70% of all statements for these applications are issued within 0.1ms
of the previous statement. Also interesting is the curve for queries issued by the Android System itself. The
interarrival time CDF appears to be almost precisely logarithmic for rates above 10µs, but has a notable lack
of interarrival times in the 1ms to 10ms range. This could suggest caching effects, with the cache expiring
after 1ms.

As seen in Figure 5b, most apps hold to the average runtime of 100µs, with several notable exceptions. Over
50% of the Android System’s statements take on the order of 1ms. Just under 20% of Hangouts statements take
10ms, suggesting an update-heavy workload. Also, Contacts Storage has a heavier-duty workload, with 30%
of statements taking between 100µs and 1ms. Figure 5c shows that the Android System and Media Storage
issue almost exclusively single-row lookup queries. The remaining apps issue a large number of single-
row queries — Even Contacts Storage has a workload consisting of 45% single-row reads — the number of
rows returned in general varies much more widely. Many of these apps’ user interfaces have both a list
and a search view that show multiple records at a time, suggesting that these views are backed directly
by SQLite. Although all apps have long tails, two apps in particular: Gmail and Google+ are notable for
regularly issuing queries that return on the order of hundreds of rows.

Figure 6 shows variations in query burstiness across multiple apps and users1. Two features immediately
emerge from this data. First, POCKETDATA workloads are extremely bursty; The default steady state is
completely idle, with infrequent bursts of hundreds of operations per second. Second, the nature of these
bursts varies significantly by the calling app; In this trace Facebook generates a read-only workload, while
Whatsapp produces two bursts each with a distinct mix of updates, inserts, deletes, and selects.

We will freely release aggregate metrics about database usage patterns in embedded smartphone databases.
We also plan to make our source traces available to researchers with approval from their institution’s IRB.
By doing this, we will enable other researchers to begin exploring the bottlenecks in and practical limita-
tions of existing embedded databases, as well as in abstraction layers like object-relational mappers. Better
understanding the space will help to identify new research challenges, and help to encourage researchers
to join the POCKETDATA community.

1.2 — Instrumentation
We will provide an instrumentation toolkit for the POCKETDATA community. The goal of this toolkit is
twofold: (1) Gathering usage traces and metrics from phones deployed in real-world settings, and (2)

1The PIs have already incorporated material from this proposal into their coursework. Figure 6 is from a student report [77] from
UB’s CSE-662, jointly instructed by PIs Kennedy and Ziarek. The student group performed an app-centric analysis of the query traces.
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Figure 6: Variations in bursty data access patterns [77] for WhatsApp (a) and Facebook (b).

Reliably measuring system performance on simulated and replayed POCKETDATA workloads. There are
several challenges unique to the POCKETDATA setting that make instrumenting smartphone embedded
databases difficult. The simplest of these is that smartphones rely on specialized operating systems, hard-
ware, and virtualization that can make it difficult to deploy existing measurement tools designed for desk-
tops. Many of these tools can be ported and we will endeavor to supplement existing community efforts in
doing so. There are also several more subtle challenges specific to instrumenting POCKETDATA.

A key challenge is the types of bottlenecks that POCKETDATA workloads encounter. Typical metrics for
enterprise benchmarks include throughput at saturation, joules per unit of throughput, and throughput
vs latency curves. These metrics makes sense for evaluating systems where large numbers of users make
scalability and average and peak throughputs the dominant concern. However, POCKETDATA workloads
are generated by individual users and apps acting on their behalf. In this setting, scalability and through-
put are not as important as latency, power consumption, and memory use. This subtle distinction makes
reliable benchmarking far more difficult; It is not reasonable to throw an infinite load at the system and
simply measure how fast the load is processed.

A naive strategy might be to issue a normal, bursty, steady state load similar to the loads we observed in
practice [48, 77] and measure user-facing properties like latency to first response and time to completion.
However, this approach fails to consider important factors not directly visible to the user, including CPU
use, memory requirements, and overall power consumed. Measuring several of these properties involves
instrumenting components of the OS. For example, when a CPU is spending time idling, reliably attributing
CPU cycles to an Android app requires a specially instrumented scheduler.

A further concern that makes POCKETDATA instrumentation difficult is that embedded databases are typ-
ically stored in self-contained files. Replicating an embedded database can be as simple as initiating a file
transfer over HTTP. We observed many apps exploiting this feature in practice [48]. File transfers bypass
the normal embedded database library, so fully capturing an app’s interactions with an embedded database
requires jointly instrumenting other aspects of the OS, including the filesystem and network layers.

As part of the proposed work, we will develop an instrumentation toolkit that can reliably track an app’s
embedded database activities and measure all facets of an embedded database’s performance.
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1.3 — Benchmark
The second component of our research toolkit is a modular benchmarking suite, which will serve three
roles for the POCKETDATA community. First, a benchmark will foster research on embedded databases by
creating a realistic standard for evaluation, allowing for fair comparisons across competing research efforts.
Second, by providing a precise set of metrics to optimize for, a benchmark will serve to guide the research
community’s efforts towards pertinent real-world challenges faced by smartphone applications.

Finally, smartphones and smartphone applications are still in their infancy, and their data management
needs are evolving very quickly. To remain useful, the benchmark will require a concerted research effort
to track changes in app usage behaviors and bottlenecks. We will develop a modular benchmark along the
lines of PolePosition [1], driven by modules that capture the semantics and behavior of a class of applica-
tions. Based on the metrics gathering efforts discussed above, we will lead an effort to continually monitor
app’s data usage patterns for changes, as well as for changes in how phone users engage with data-driven
apps. As new patterns are discovered by the POCKETDATA community, we will maintain a repository of
modules describing these behaviors.

Our initial benchmark design is organized into two tiers: Application and User. The Application tier will
consist of a set of app modules; Each module will simulate the query behavior of one smartphone app (or
class of apps), mirroring workloads that we see in our query traces. Our goal will be to understand the
types of data that the app stores (based on inspection of the app’s schema and query patterns), as well as
the app’s approach to accessing and modifying its data. Ideally, we will be able to link individual queries to
triggering events (user interactions, timers firing, display updates, etc. . . ), allowing us to model the app’s
query patterns in terms of the distribution of these events. Although we hope to automate this process
eventually, our initial approach will be to focus on one app at a time. This will not only help us to bet-
ter understand the space, but also to generate realistic datasets by being able to analyze the specific app’s
schema and updates/inserts. The Application tier of the full benchmark will consist of a representative
cover of the 179 apps that we encountered in our preliminary analysis, as well as apps that we encounter
in subsequent data gathering efforts. The User tier will simulate the complete phone environment. Statis-
tics for single user include of a cluster of app modules, patterns of charging behavior (when is the phone
plugged in?), network access (when is the phone on the internet, and with what quality?), and other be-
havioral traits that impact app data access patterns. To simulate users, we will use standard clustering
techniques on our trace data first to create canonical user profiles, and then to identify natural variation
around those profiles.

It is reasonable to ask why a specialized POCKETDATA database benchmark is necessary. To answer this
question, we surveyed a variety of existing benchmarks. Benchmarks such as AndroBench [54] and Mo-
biGen [6] target mobile devices and mobile software. Although AndroBench does include a component
for simulating the filesystem access patterns of SQLite, neither of these benchmarks explicitly generates
the structured data access patterns necessary to evaluate a complete data management system. Previous
research efforts [41] have used mobility traces generated by MobiGen, fed to a virtual machine running
common apps such as Facebook to generate semi-realistic traces of embedded database access patterns.
Although POCKETDATA follows a more principled approach based on real-world traces, the metrics we
release could be used to validate and standardize data generation tricks of this sort.

A substantial fraction of data management tasks in smartphone embedded databases involve data manip-
ulations. Such tasks are often well modeled by Online Transaction Processing (OLAP) query benchmarks
such as TPC-C [22] or YCSB [21]. However, OLAP benchmarks fall short in two ways. First, OLAP bench-
mark query patterns are typically designed to stress concurrency bottlenecks in the systems being tested.
Conversely, mobile SQLite databases are isolated into specialized app-specific silos. The most intensive
database user in our preliminary study, Google Play services had 14.8 million statements attributed to it, just
under half of which were writes. This equates to about one write every 3 seconds, which is substantial
from a power management and latency perspective, but which is unlikely to create a concurrency bottle-
neck. Second, many OLAP benchmarks focus on comparatively simple queries. A notable portion of the
workload we observed in our preliminary study can indeed be described as simple: 13% of the applica-
tions we observed had a read workload that consisted exclusively of key/value queries, and over half of
the applications we observed had a workload that consisted of at least 80% key/value queries.
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However, the trace also exhibited a long tail of extremely complex queries. A small, but significant number
of queries we observed in our preliminary study include multiple levels of query nesting, wide joins, and
extensive use of aggregation. As such, they more closely resemble analytics (OLAP) workload benchmarks
such as TPC-H [24], The Star-Schema Benchmark [73], and TPC-DS [23]. This mix of OLAP and OLTP
workloads is unique to POCKETDATA applications, which are individually simple, but can have a huge
impact when taken in aggregate across all apps on a phone. We do however note that the presence of
analytics queries in pocket data management is likely to increase further, as interest grows in smartphones
as a platform for personal sensing [12, 55, 59] and analytics [85, 67, 83]

The most conceptually similar benchmark is the PolePosition [1] embedded database benchmark. Pole-
Position simulates the behavior of specific data structure abstractions that need to be backed by a data
management system. Because data structures are defined using higher-level operational semantics rather
than through a fixed database API, databases are allowed to specialize benchmarks to specific access pat-
terns that the database may be optimized for. The fundamental goals of PolePosition and the POCKETDATA
benchmark are similar, but POCKETDATA will operate at a higher level of abstraction, capturing the behav-
ior of entire apps, as well as users that engage with those apps.

1.4 — Visualization
Even the short, month-long query trace with only 11 users on which our preliminary study was based
included over 45 million SQL statements. As the experiment is scaled up, analyzing these query traces
will become increasingly difficult. Compounding the issue, the comparatively high complexity of many of
the the queries makes it difficult to flatten the SQL parse trees into a simple relational format for analysis.
Our preliminary analysis required repeated iterations of our feature extraction process: We would define a
procedure for extracting interesting features of a SQL statement’s parse tree, construct a visualization from
the extracted feature, and then identify a new feature of interest.

As part of the proposed work, we will release tools for analyzing query logs that streamline this iterative
process, by making it easy define new feature extractors. As feature extraction is an embarrassingly parallel
task, simple optimizations like caching, parallelism, and incremental computation [47] can be used to make
these tools extremely efficient2. Source code for all visualizations that we release as part of our summary
metrics will be released to the public to further encourage community participation in POCKETDATA.

1.5 — Workshop
We will build an initial POCKETDATA community and facilitate engagement with the broader CISE com-
munity through outreach efforts including attending poster and demo sessions and hosting workshops
and tutorials co-located with major conferences in databases (VLDB, SIGMOD, ICDE), mobile and real-
time systems (MobiSys, OSDI, RTSS, RTAS), and programming languages (POPL, PLDI, OOPSLA). Poster
sessions provide an ideal opportunity to meet researchers in related areas, to advertise the resources we
plan to offer, and gather feedback about the needs of potential POCKETDATA community members.

Tutorials offer a more formal, extended opportunity to introduce members of broader communities in CISE
to technologies related to POCKETDATA, and to train them in the technology’s use. As a side effect, a tutorial
offers an opportunity to advertise the proposed resources as tools for conducting research in these areas.
Potential tutorial subjects pertinent to POCKETDATA include embedded databases, data management on
smartphones, object-relational mappers, and smartphone development.

Our final outreach effort will be a POCKETDATA workshop. This will offer a forum for researchers ex-
ploring opportunities in small-scale data management to come together and offer each other feedback.
Simultaneously, a workshop creates an incentive for researchers in adjacent areas like IoT, mobile sys-
tems, and adaptive data management to carefully venture into the POCKETDATA space. In the interest
of having broad appeal, our proposed POCKETDATA workshop will target several related spaces, includ-
ing small-data management [27], gestural query interfaces [67], adaptive databases [37], and embedded
databases [10], among others.

We have budgeted for each project participant to attend at least one conference over the one-year planning

2As a comment on the utility of specialized tools for log analysis, we return to the CSE-662 project involving analyzing POCKET-
DATA logs. The four students began with a naive analysis tool (written by the students in Java) that took multiple hours to complete
one iteration of the analytics cycle. By the end of the course, they had optimized the tool to run in under 10 seconds [77].

9



period, allowing for the project to connect with multiple communities. If funded, we will continue these
efforts for the span of the infrastructure grant.

2 — New Research Opportunities
In this section we present a few concrete projects that would benefit from POCKETDATA and describe how
the proposed infrastructure will enable research for the PIs and the broader CISE community.

2.1 — Adaptive Data Management
Selecting the correct physical structure for a database under a given workload is an extremely challeng-
ing [18, 16, 17, 4] part of database management. The index selection problem becomes even harder when
workload characteristics fluctuate rapidly or are not known in advance. There is currently substantial in-
terest in a breed of self-adjusting, adaptive index structures [37, 40] that address dynamic index selection
by facilitating incremental, online changes to the index. Examples of adaptive indexes include Cracker In-
dexes [39, 38, 35], Adaptive Merge Trees [34, 32], SMIX [88], H2O [7], and Just-in-Time Data Structures [53].
Adaptive indexes automatically optimize their physical representation in response to incoming queries,
reusing work used to answer the query to also improve subsequent queries. Given enough time, a sta-
ble workload, and queries that touch all data objects, an adaptive index eventually converges to a data
representation similar to that of a static index.

Infrastructure Justification: Although there have been several efforts [33, 79] to develop benchmarks for
adaptive indexes, these benchmarks rely on purely synthetic data and unit-tests rather than real-world
scenarios. This is in part because typical enterprise workloads rarely exhibit the type of drastic shifts that
adaptive indexes target. As a result most data management benchmarks evaluate systems under stable,
steady-state workloads. By contrast, POCKETDATA workloads often show extreme variation in both appli-
cation demands and resource availability. As a trivial example, an app might demand low-latency, low-
power access to data when a user is actively using the phone, while admitting high-latency high-power
organizational tasks when the phone is plugged in [14].

Community Interest: Stratos Idreos’s DAS lab at Harvard will use the POCKETDATA metrics and benchmark
workloads to evaluate their work on adaptive data systems.

I think work on adaptive data systems could benefit. I assume Pocket Data will capture diverse workloads
(from various apps) and so this would be a perfect environment to test adaptive data systems. I have a new
project on easy to design systems out of modules that can be synthesized. The input is workloads. Perhaps
PocketData can provide a testing framework for such work for designing data systems for mobile environments.
-Stratos Idreos (Harvard)

2.2 — Small-Data Analytics and Personal Internet of Things
The prevalence of tablet and smartphone computing devices makes them an ideal analytics front-end. Apps
such as Zillow, Google Earth, and MapMyRun provide specialized front-ends for data exploration. Apple’s
iTunes Store has an “Apps for Healthcare Professionals” section with dozens of apps for visualizing and
exploring patient statistics. These apps are part of a growing number of small-data analytics and personal-
ized IoT applications that present new and intriguing opportunities for research. For example, smartphone
and tablet touch-based interfaces require a significant redesign of the way users pose queries [66, 67, 42, 30].
Embedded databases create opportunities for more detailed, interactive academic manuscripts [27, 28] that
help to ensure reproducible results. The relatively limited compute and memory resources available on
tablets and smartphones also demand new techniques for rapidly building visualizations of medium sized
databases [43, 83, 86, 72].

Infrastructure Justification: Small-data analytics efforts are presently siloed, with most research efforts
targeting entire software stacks, from the user interface front-end to the back-end database. The standard
evaluation tools offered by the POCKETDATA benchmark would help to decouple the research challenges
involved in small-data analytics and allow a broader community of researchers to contribute. For example,
an embedded database benchmark simulating a visual query interface workload would serve as a standard
for evaluating novel algorithms, indexes, and data management tools.

Community Interest: Arnab Nandi from Ohio State has offered to contribute traces of human interactions
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with his tools for gestural query specification to the POCKETDATA effort. Jens Dittrich of Saarland Univer-
sity is interested in connections between PocketData and his work on Janiform Documents [28].

2.3 — Data-Driven Apps
Virtually all access to embedded databases on smartphones occurs through SQL statements that have
been procedurally generated by apps — Smartphone users do not manually write SQL queries. In this
respect, data-driven smartphone apps are similar to data-driven enterprise applications. However, enter-
prise software is typically supported by experienced database administrators who can carefully fine-tune
the database to efficiently support the application. This is not the case for smartphone apps, which instead
rely on compiler tools and software libraries to efficiently mediate access to persistent data. Consequently,
POCKETDATA offers new research opportunities at the interface between imperative programming lan-
guages like C, C#, or Java, and back-end data management tools. Forms of inline SQL like LinQ [11, 63]
have existed for nearly a decade, but are not frequently used in the development of smartphone apps. In-
stead, app developers frequently rely on higher level primitives including object-relational mappers [64]
(ORMs) like Hibernate [87] to mediate access to the database. Unfortunately, at present, most ORMs are
implemented as libraries and lack the ability to introspect the invoking program. This creates an impedance
mismatch between the available information and SQL’s declarative syntax, forcing ORMs to misuse SQL, or
to rely on optional hints provided by the app developer to provide efficient data access. In our preliminary
exploration [48], we found significant anti-patterns emerging in queries to SQLite. Examples include the
use of expensive UPSERT operations when UPDATEs would be sufficient, the use of multiple SELECT queries
to dereference foreign-keys instead of using an outer-join query, and the use of separate read-then-write
queries rather than in-place updates. Several research efforts, including StatusQuo [20], Sloth [19], and
Truffle/Graal [89] have addressed similar problems in enterprise data-driven applications and could find
new challenges in the POCKETDATA space. Other research efforts explore data-flow in smartphones for
performance optimization [92, 93, 78] and correctness [90], and would benefit from more detailed tools for
introspection and measurement.

Infrastructure Justification: Research on data-driven app development requires a detailed understanding
of application requirements, and programming language research needs real-world workloads to demon-
strate its viability. The metrics that we propose to gather and the benchmark suite we propose to develop
are critical for driving research in this space.

Community Interest: Nasko Rountev of Ohio State will use POCKETDATA as part his work on data-flow
analysis debug of GUI responsiveness issues and as part of his LeakDroid project.

2.4 — Database-App Coupling
Smartphone apps are integrated with the data management tools they use to a far greater degree than
enterprise applications. Embedded databases are libraries that operate within the app’s memory space,
and not external tools. Apps generate virtually all queries procedurally, making it possible to specify their
data management requirements extremely precisely at compile time. Moreover, access to data often occurs
through higher-level primitives like ORMs. In short, although embedded databases are in principle capable
of emulating stand-alone database engines, in practice they are used more as toolkits of data management
building blocks. The tight coupling between app and database promises to offer numerous avenues for
workload-driven database optimization. A leader in this area is BerkeleyDB. Although BerkeleyDB does
provide a SQL emulation front-end, its core functionality is to provide simple database building blocks like
primary and secondary indexing, foreign-key consistency primitives, and transactional access to data. Sim-
ilar efforts are taking place across multiple industrial research labs and startup companies, as numerous or-
ganizations have begun to invest into embedded databases. Corporate investment in embedded databases
includes MongoDB’s WiredTiger [29], SAP’s SqlAnywhere [10], and Facebook’s RocksDB, as well as open-
source efforts including the H2 Database [65] and SQLite [74]. The tight coupling between database and
the invoking application also admits possibilities for more aggressive database specialization. Database
compilers like DBToaster [47, 58, 5], HyPer/LLVM [71], and Legorithmics [57, 56] aggressively compile
and optimize database engines that are uniquely specialized for a specific application’s query and update
workload, as well as its underlying hardware. As already noted above, many of these statistics are available
at compile time, making the POCKETDATA setting an ideal candidate for deploying these applications.

Infrastructure Justification: Realistic evaluation of embedded databases and database compilers requires
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realistic workloads. Moreover, smartphones are one of the most prolific examples of embedded databases
deployed in the wild. Given the variation in smartphone apps’ data management requirements, even lim-
ited data releases by a single app developer will not be representative. The metrics we will gather, and the
benchmark we are proposing will be key to helping researchers evaluate new embedded database tools.

Community Interest: Christoph Koch’s DATA lab at EPFL is interested in using the POCKETDATA bench-
mark to evaluate their work on database compilers. Ashok Joshi and Michael Brey of Oracle are interested in
participating in the POCKETDATA community to advance research on embedded databases.

I got some feedback from one of my colleagues on this topic. Yes, the real-world traces of embedded data usage
would be useful; so would the benchmarking toolkit. -Ashok Joshi (Senior Director at Oracle)

Within Oracle, we are always looking at how the industry both consumer and enterprise is using data in mobile
applications. Things like db size, access patterns, single/multi user (multiple apps accessing same db), speed of
access required, record size/structure etc. are all important to understand. We are also very interested in the
movement of data from the device to some backend repository. -Michael Brey (Oracle)

2.5 — Enabled Research For the PIs
The PIs have a joint research project aimed at exposing uncertainty in mobile computing [14]. The project
focuses on exposing new language primitives to the programmer to specify multiple implementations of
system functionality allowing the system to pick which implementation to use at runtime. This allows
the system to specialize software to a given hardware platform and more importantly to a given set of
external considerations (e.g. network connectivity, available sensors, etc.). Our proposed infrastructure
will enable us to study two key aspects of uncertainty: (1) Almost all mobile applications store user data
and configuration parameters in mobile databasesand access to this data can have a profound impact on
the behavior of an application. POCKETDATA will allow us to more readily study this aspect of mobile
uncertainty; (2) The infrastructure powering our runtime system for exposing uncertainty is built around a
mobile database that stores possible choices the software system can make. POCKETDATA will allow us to
optimize this database to reduce choice latency.

PIs Kennedy and Ziarek have a joint research project, Just-in-Time Data Structures (JITDs), focusing on
adaptive indexing [53]. The project explores the use of standardized, composable data structure building
blocks to dynamically assemble indexes that adapt to rapidly changing workload requirements. The level
of variation in load and resource availability that occurs in POCKETDATA workloads creates an ideal use-
case for JITDs. As noted above, our proposed infrastructure will provide us with a benchmark workload
that will help us to evaluate adaptive indexes under real-world conditions, rather than through purely
synthetic workloads.

PI Kennedy is part of a collaborative research project with Shambhu Upadhyaya (UB), Varun Chandola (UB),
Hung Ngo (UB), and Long Nguyen (UMich) that explores techniques for identifying insider attacks on
databases (NSF-CNS-1409551). Although the threat of insider attacks on mobile devices may be mini-
mal, the specific methodology behind the work involves summarizing query logs by creating clusters of
queries with similar “intent.” The approach is showing promise for summarizing query logs from a cor-
porate (banking) setting. Having query logs from other settings like POCKETDATA would show that the
approach can be generalized to domains other than Insider Threat detection (for example to the design of
index selection tools). If successful, these efforts could also contribute back to the POCKETDATA project,
as a tool for quickly summarizing and clustering query logs would help to build out the visualization and
benchmark design components of the proposed infrastructure.

3 — Community Involvement
The PIs have already reached out to the database and mobile systems communities for feedback on the
current infrastructure, providing the PIs with an initial community and a preliminary source of feedback
on design, APIs, and features. A detailed description can be found above, in Section 2. In summary,
there is interest from researchers working on embedded databases, small-scale data management, personal
sensing, query interfaces, and several closely related areas. The POCKETDATA benchmark will serve as a
focal point for the community’s involvement by providing the community with a way to explore, discuss,
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and disseminate new data management use cases, and by offering a standard way to evaluate systems on
those use cases.

Preliminary work on characterizing differences between POCKETDATA and traditional benchmarking in-
frastructures was presented at the TPC-TC symposium, which has allowed the PIs to solicit industrial
feedback. The PIs are currently in first stage discussions with researchers from VMware, Cisco, Google,
Samsung, and Oracle regarding TPC involvement in the POCKETDATA benchmark. From this starting point
the PIs will also broaden their target communities to included researchers from programming languages as
well as real-time and embedded systems.

The PIs believe that expanding the pervue of POCKETDATA to also include IoT will broaden the utility of the
proposed infrastructure. IoT has recently renewed interest in databases systems that are specialized for IoT
(stream databases, in-network query processors) and/or are capable of running on embedded devices (e.g.,
TinyDB [60]). As embedded processors become more capable, with larger amounts of main memory avail-
able (e.g. Intel’s Edison platform), there is a growing push from the embedded and also from the real-time
communities to explore including databases and query processing in small scale embedded systems. The
PIs believe that emerging research in smart cities and personalized medical devices that aggregate and pro-
cesses biometric data would benefit from POCKETDATA. Domain specific languages (DSLs) are becoming
more pervasive as mechanisms to both amplify programmer effort for specialized systems and to greatly
improve performance in time, space, and even energy consumption. The PIs believe that POCKETDATA
will be of interested to both database and programming language researchers in the IoT space.

I think synchronizing device data with server data is a very common occurrence in this space. As a
simple example, you should be able to synchronize your ‘contacts’ database on your cell phone with a
server repository. Recently, Mike Brey, Raghu Nambiar and I proposed a “strawman” IoT benchmark [44]
— I think extending your work to include large-scale data synchronization would be worth considering.
-Ashok Joshi (Senior Director; Oracle NoSQL Database, Berkeley DB, Database Mobile Server)

Evidence of Support The PIs have conducted several informal surveys and participated in many discus-
sions with members of the CISE community to better understand the community’s needs. Table 7 sum-
marizes our current efforts toward building a community and the community’s support for our proposed
infrastructure.

researcher affiliation research area enabled research
Stratos Idreos Harvard Databases Adaptive indexes
Arnab Nandi Ohio State Databases/HCI Interactive analytics

Nasko Routnev Ohio State Programming Languages Mobile data flow analysis
Christoph Koch EPFL Databases/Theory Database compilers

Ashok Joshi Oracle Databases/IoT IoT performance
Michael Brey Oracle Databases/Mobile Systems Embedded DB performance
Meikel Poess Oracle Databases Performance measurement

Raghunath Nambiar Cisco Databases Performance measurement
Reza Taheri VMWare Databases Performance measurement

Jens Dittrich Saarland University Databases/Mobile Systems Small-data analytics
Sharad Agarwal Microsoft Research Mobile Systems/Sensing Mobile systems performance

Figure 7: Existing Community Interest in POCKETDATA

4 — Planning Activities
Our planning process will consist of a development effort and an outreach effort. First and foremost, the
centerpiece of our development side community-building efforts is the POCKETDATA benchmark. In ad-
dition to acting as a standard for evaluating research efforts that overcome bottlenecks and limitations of
existing technology, the modular benchmark will serve as a hub for the community to discuss and describe
these limitations. Under the guidance of the PIs, the graduate student supported by this proposal will be
responsible for developing a preliminary prototype benchmark. The first version of this benchmark will
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stress bottlenecks identified in our preliminary study [48] by simulating the behavior of a small number of
smartphone apps. Using data and query logs derived from our preliminary study, we hope to have ver-
sion one of the benchmark ready within 4-6 months. The benchmark will be released and advertised over
community mailing lists like DBWorld [2]. By this point, we expect to have expanded the POCKETDATA
community through our outreach efforts. After releasing the benchmark we will hold a 3 month commu-
nity feedback process, allowing us to release version 2 of the benchmark based on community feedback
before the end of the planning period. Additionally we will pursue feedback from the IoT community to
understand how POCKETDATA can be extended to meet the IoT community’s needs. We envision that these
needs will vary depending on the aspect of IoT a given community is interested in (e.g. language runtime
design vs. embedded databases). To avoid creating an infrastructure only suited to the needs of a particular
niche, we will solicit feedback from many sources.

In addition to the PocketData community, we will leverage interest from the Transaction Processing Coun-
cil (TPC) in developing an embedded database benchmark. The TPC represents one of the most prominent
names in database benchmarking, and is responsible for benchmarks like TPC-C [22], TPC-H [24], and
TPC-DS [23] that are touchstones for evaluating research in databases. After presenting our preliminary
work at the TPC’s annual symposium colocated with VLDB 2015, Raghunath Nambiar (Cisco), Reza Taheri
(VMWare), and Meikel Poess (Oracle) of the TPC expressed interest in helping us to develop POCKETDATA
as an eventual TPC benchmark. The PIs hope to also participate in TPC discussions on IoT concerns. The
TPC discussions will provide the PIs will both industry and academic perspectives on both embedded
databases as well as IoT. The PIs hope to leverage this information in the design of the proposed POCKET-
DATA infrastructure. Although all PIs will be involved in communications with the TPC and its members,
PI Kennedy will act as a lead point of contact.

To continue building our current community and to expand it to include IoT researchers, the PIs expect to
travel to top conferences in a variety of fields. Our outreach efforts will begin with poster sessions, tutorials,
and demos presented at prominent database conferences. One candidate is ICDE 2017, which takes place
early in the planning period. PI Kennedy will coordinate efforts to perform a demonstration at a database
conference to incite discussion and interest in POCKETDATA from the database community. PI Ziarek will
coordinate efforts for a demonstration or poster presentation initially targeting SPLASH 2016 to reach out
to the PL community, and PI Challen will coordinate efforts for a demonstration or poster presentation
initially targeting MobiSys 2017 to reach out to the mobile systems community. At these conferences the
PIs will network with researchers who work on IoT as well. In addition, there are many new conferences
focusing on IoT that are emerging. The PIs expect to attend IoTA, IoTDI, and WF-IoT. Towards the end of
the first year of the proposal, the PIs will begin to develop a tutorial on embedded databases and plan for
a POCKETDATA workshop.

The PIs will submit a CI-NEW proposal for POCKETDATA in Fall of 2017, approximately 15 months after
the start of the planning proposal.

5 — Broader Impacts of the Proposed Work
With 2 billion smartphones in the world and more being added every day, mobile platforms together form
the most pervasive distributed system on the planet. People are increasingly relying on smartphones to
manage their lives, from contacts and todo lists, to their health, their homes, and the contents of their
wallets. This proliferation of data-driven smartphone apps is causing a need for more, faster, more user-
friendly, and more power-aware techniques for managing data on smartphones and embedded devices.

To meet the challenges of this new frontier in data management, it is critical that we begin understand
how smartphone apps store and retrieve structured state and establish standards for evaluating potential
advances based on this understanding. Our proposal lays the groundwork for research on pocket-scale
data management. We have interest from the Transaction Processing Council for our proposed benchmark,
and even before the planning stage, several members of the database, systems, and programming language
communities have expressed interest in the resources we propose to offer.

In addition to supporting research in a critical area, this proposal will support one graduate student during
the planning phase and up to two graduate students in later phases, contributing to between one and two
PhD theses. We anticipate that the proposed work may also lead to one or two MS theses, and if funded,
plan to apply for an REU supplement for this proposal. The resources created by this proposal will also
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be integrated into courses taught by the PIs, a process that has already started: PIs Kennedy and Ziarek
recently co-taught a project-oriented course entitled “CSE-662: Languages and Runtimes for Big Data.”
The course included material related to POCKETDATA research, and three of the seven groups in the course
worked on projects based on POCKETDATA and the Internet of Things.

6 — Results from Prior NSF Support
PI Kennedy has been awarded “TWC: Medium: Collaborative: Data is Social: Exploiting Data Relation-
ships to Detect Insider Attacks”, starting on 10/01/2014 and ending on 09/30/2018. The award number is
CNS-1409551 and the amount is $959,999 with a duration of four years, including an REU supplement.

Results Related to Intellectual Merit: The project has collected a trace of all queries performed on all
database servers at M&T bank for a period of one week. With the help of M&T security staff, this trace was
anonymized and cleared for export to UB hardware. The project team recently submitted a short paper to
a WWW 2016 workshop describing our approach to intent-based query clustering, and is working on a full
version of the paper for publication within a month.

Results Related to Broader Impact: The project’s use of M&T query data as a test case provides feedback
about the reliability of our tool, and ensures that it can be applied to real-world problems.

Evidence of Research Products: Project Co-PIs Upadhyaya and Chandola presented our preliminary work
at a SaTC PI meeting in January 2015. PI Upadhyaya and team member Gokhan Kul presented a prelimi-
nary paper on insider attack ontologies at the USENIX MIST workshop.

PI Ziarek is a PI on two current NSF awards. The one most related to the proposed project is “II-EN:
Collaborative Research: Positioning MLton for Next-Generation Programming Languages Research” start-
ing on 07/30/2014 and ending on 07/29/2017. The award number is CNS-1405614 and the amount is
$381,640.00 with a duration of three years.

Results Related to Intellectual Merit: The development team has currently merged the Multi-MLton GC
structure with that of the main line MLton branch and is currently undergoing extensive testing and per-
formance tuning. The restructured GC will allow MLton users to seamlessly migrate their existing code
base to execute on multi-core machines and leverage multiple concurrent and parallel GC configurations.
This award has resulted in a publication titled “Adding Real-time Capabilities to a SML Compiler” in
DPRTCPS’15.

Results Related to Broader Impact: The development team has produced a new version of the MLton
hacker’s guide available at: https://github.com/UBMLtonGroup/HackersGuide. The substantially up-
dated hacker’s guide provides new MLton contributors detailed knowledge on the compiler and runtime
structures, focusing on the new additions of the parallel runtime.

Evidence of Research Products: The development team has all source code available in a public git hub
repository https://github.com/UBMLtonGroup. The changes are slated to be merged into the mainline
MLton branch by the end of the year.

PI Challen is a PI on three current NSF awards. The one most related to the proposed project is “PhoneLab:
A Programmable Participatory Smartphone Testbed“, which started 06/01/2012 and ends 05/30/2016. The
award number is CNS-1205656 and the amount is $1,322,510 with a duration of three years.

Results Related to Intellectual Merit: PHONELAB opened its platform sources to external researchers in
February 2015, and we are actively collaborating with several groups on experiments.

Results Related Broader Impact: PHONELAB software and datasets are available to external researchers
subject to human subjects review.

Evidence of Research Products: PHONELAB has produced 13 internal [69, 15, 68, 26, 80, 25, 70, 61, 13, 49,
81, 62, 82] and 2 external [31, 36] publications. Several more recent works using PHONELAB are under
submission.
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