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As energy management on energy-constrained devices continues to challenge researchers and frustrate
users, device designs are addressing the problem by integrating more hardware components that can trade
off energy and performance. Dynamic voltage-and-frequency scaling (DVFS) allows CPUs and memory
to trade off speed and energy, buffering and polling rates allow radios to trade off latency and energy,
and screen refresh rates allow displays to trade off quality and energy. And as the Dark Silicon utilization
wall forces systems to choose what parts of the CPU to operate, the already-large configuration space will
explode. This proposal refers to the emerging class of devices integrating multiple energy-proportional
components as power-agile, reflecting their potential ability to adaptively reallocate energy usage between
components to improve performance and save energy. But as energy-management features proliferate,
new interfaces enabling coordination between applications, the operating system (OS), and hardware are
urgently needed to realize the potential energy and performance benefits.

INTELLECTUAL MERIT: Our proposal describes a new architecture for power-agile systems with both
novel interfaces that cleanly separate energy management responsibilities and a new approach to energy
allocation driven by differences in hardware energy efficiency. Applications use resource requests to allo-
cate energy between hardware components, making their resource needs explicit. The OS manages energy
by using the application’s priority to determine an inefficiency allocation, which controls how much ex-
tra energy the application can consume to improve performance. Hardware energy usage is controlled
through per-component energy constraints, which facilitate OS control while allowing components to max-
imize constrained performance. By improving energy coordination and allocation, the system achieves
energy-efficient performance not currently possible.

Enabling power agility requires research at both the application-OS and OS-hardware boundary. At the
application-OS boundary we will invent a new interface allowing applications to allocate energy between
components that expose energy-efficiency tradeoffs. This interface requires new ways to describe energy
balance between components, language support for programmer annotations to guide the tuning process,
and libraries of algorithms to support unannotated applications. Resource request traces will also help
inform hardware design and consumer purchases in exciting and novel ways. At the OS-hardware bound-
ary, a new energy management interface must be invented allowing the operating system to effectively set
energy constraints, and new ways to support this interface in hardware must be explored.

While resource requests allow applications to adjust energy balance between components, the OS must
remain in control of total energy usage in order to prioritize energy between applications and over time.
Because the energy efficiency of many hardware components changes along with their energy-performance
settings, we propose to investigate inefficiency as an novel energy allocation mechanism. This approach
has the potential to address many of the limitations of previous attempts at OS energy management.

BROADER IMPACT: The proposed broader impact activities will excite the next generation of computer sci-
entists about power-agile design and build a shared knowledge and development base within the energy
management community. First, a publicly-available component energy usage database will be established
and seeded with both device and component energy measurements and workloads developed during the
project. This will meet a critical need in the energy management community, as reliable numbers for com-
ponents are difficult to obtain and few appropriate workloads are available. Standardizing and sharing this
information will accelerate research in this area. Second, support for energy-proportional components and
Dark Silicon features will be added to the popular gem5 simulator and made available for other researchers
to use. Finally, a new graduate course on power-agile computing will be developed and taught by the
co-PIs.

KEYWORDS: (1) energy management; (2) distributed systems; (3) mobile systems; (4) smartphones.
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INTELLECTUAL MERIT
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Figure 1: Example of power agility. Numbered labels below
describe the energy usage graph above.

0. When idle components consume minimal power.
1. Radio and storage power consumption increase as a back-

ground task begins receiving and storing data.
2. Once data is received, power shifts to the processor, stor-

age and memory as processing begins.
3. When the user begins interacting with the application, the

OS boosts its priority, allowing it to consume more energy.
The balance between components, however, remains the
same as the application requested previously.

4. The application continues rebalancing energy usage be-
tween components.

5. When the applications begins offloading data, radio and
storage usage increase, storage usage decreases.

6. As the interactive session completes, the applications pri-
ority and total energy allocation are reduced. Again, bal-
ance between components is preserved.

7. The background task completes, idling the phone.

Energy-constrained smartphones are prolifer-
ating rapidly, with the International Data Cor-
poration (IDC) reporting that one new unit
for every 30 people on earth was shipped by
manufacturers during the second quarter of
2013 alone [30]. Energy management on these
devices, however, remains a major challenge,
with consumers citing battery lifetime as their
top concern with today’s smartphones [53].

As a result, energy-constrained devices are in-
tegrating multiple hardware components pre-
senting energy-performance tradeoffs: CPUs
and memory that can scale voltage and fre-
quency to save energy as they slow down; ra-
dios that can tune their polling rates and idle
timeouts to save energy by increasing latency;
and screens that can dim or reduce refresh rates
to save energy by reducing quality. Multi-
ple energy-performance knobs create the po-
tential for applications to choose the right bal-
ance of component settings to maintain accept-
able performance while saving as much energy
as possible. We refer to this ability as power
agility1. Figure 1 shows how a power-agile de-
vice would operate, with the application allo-
cating energy between components while the
OS controls overall usage. The energy saved
by power agility can improve device lifetimes
or accelerate application performance.

Unfortunately, today we are a long way from
achieving power agility. While tuning single components such as CPUs using dynamic voltage and fre-
quency scaling (DVFS) has been studied for a decade [31, 18, 32, 34], OSes continue to use simple but inef-
fective approaches that neither coordinate with applications nor isolate energy usage between them [33, 25].
When multiple energy-proportional components are present, they are usually tuned independently, with-
out considering cross-component interactions. Tuning is done without application input, forcing the OS to
guess application performance requirements [21]. And controlling energy usage is complicated by the fact
that energy is treated as a side effect resulting from the interaction between performance settings and ap-
plication workloads, forcing the OS to reverse engineer settings that achieve the desired energy usage. As
a result, today’s operating systems cannot achieve power agility, and Dark Silicon [17] will further expose
this deficiency, since including more functionality than can be activated forces the system to make even
more energy-performance tradeoffs.

Our proposal outlines a novel hardware-software system architecture capable of achieving power agility
and improving energy management on today’s and tomorrow’s energy-constrained devices. Section 1
identifies problems with existing approaches to energy management that prevent them from achieving
power agility and motivate our approach. In Sections 2 and 3 we describe the two core components of our
proposed solution: a novel way of prioritizing energy usage using inefficiency and new interfaces enabling
coordination between the application, OS, and hardware. Section 4 describes the new definitions of power
agility and energy proportionality needed to evaluate power-agile systems. We compare and contrast our
approach with previous work in Section 5. Section 6 describes the project’s broader impacts and how they
will benefit society, and Section 7 concludes with a project plan and deliverables.

1We use “power agility” rather than “energy agility” to reflect the near-instantaneous adaptation power agility describes.



1 — MOTIVATION Component Attribute Method

Processor Speed DVFS.

Memory Bandwidth DVFS.

Radio Latency
Tuning polling intervals and oppor-
tunistic timeouts.

Bandwidth
Through protocol choice, antenna count,
or encoding selection.

Screen Quality Adjusting brightness and refresh rate.

Audio Quality Via sampling rate.

Table 1: Hardware component exposing an efficiency tradeoff. Most
components found in smartphones present efficiency tradeoffs between
one or more performance attributes.

Our key insight is that the way that
many hardware components scale en-
ergy and performance produces differ-
ences in energy efficiency. Processors
using DVFS, for example, use less en-
ergy per instruction when running at
a lower frequency and supply voltage;
future DVFS memory chips will be-
have similarly. Radios are more effi-
cient at receiving packets when polling
slowly, at the price of increased la-
tency. Table 1 shows that many com-
ponents found in smartphones can
make one or more of these tradeoffs between energy efficiency and performance.

Despite this hardware reality, existing software approaches fail to consider or manage efficiency. Below
we discuss limitations of current energy management approaches and use them to motivate our novel
approach which allocates inefficiency through coordination between applications, the OS, and hardware.

1.1 — Limitations of Frequency Governors and Rate Limiting
To adaptively manage energy usage, Linux provides multiple frequency governors, each with a different al-
gorithm for adjusting CPU frequency at runtime. A representative and relevant example is the “interactive”
governor used by Android smartphones. It monitors CPU utilization periodically, and if the utilization over
a previous window exceeds a threshold it immediately increases the CPU frequency to its fastest setting.
Once the utilization falls below the threshold, the governor will slowly reduce CPU frequency.

The most serious flaw with frequency governors is their failure to prioritize energy usage between tasks.
Once the utilization threshold is breached, all runnable tasks will be able to use the CPU at top speed,
regardless of their priority. We have verified on Android that a single lowest-priority task is sufficient to
trigger this behavior. Because DVFS CPUs become less efficient as they run faster, granting low-priority
tasks access to faster frequencies robs energy from higher-priority tasks. This behavior is a legacy of old
CPUs that transitioned slowly between voltage domains, requiring 100K to 10M clock cycles to change
settings. As a result of this overhead, governors limit the number of transitions by adapting slowly, too
slowly to apply per-task settings. On Android, the minimum time between frequency changes is 80 ms,
while the maximum task length is 6 ms. In contrast, future processors with on-chip voltage regulators
will switch frequencies in 10s of cycles [35], making the overhead of transitions minimal and enabling
rapid adaptation. Governors also do not consider cross-component tradeoffs, making them unsuitable for
devices with multiple energy-proportional hardware components.

Multiple research OSes have used rate limiting to manage energy usage [22, 57, 69, 40]. Although termi-
nology and mechanisms differ, the basic principle is the same. For each task, the OS maintains an amount
of energy the task may consume. If the task exhausts its allocation, it must wait for more energy before
running again. The OS can assign rates to processes reflecting their priority, and use global rate control to
target a desired system lifetime. Unfortunately, rate limiting also has multiple serious flaws.

First, merely time-shifting energy usage into the future does not reduce overall energy usage on meaningful
time scales. At best, it represents a tradeoff between performance and short-term energy usage. At worst,
it may actually cause tasks to slow down and consume more energy. To see why, consider task running
on an energy rate-limited OS. It starts executing, runs out of energy and must wait, continues executing,
and repeats this cycle until the task completes. When it does, it has consumed at least the same amount of
energy it would have consumed if it had not been periodically stopped, and, if the components it used had
high idle power, it may have consumed more energy by preventing the components from entering low-
power sleep states. If the task had been a browser trying to load a web page for a waiting user, then even
the best-case scenario of sacrificing performance—and wasting users’ time—without achieving meaningful
energy savings is not acceptable.

2



Second, effectively assigning rates to tasks is a difficult problem that rate-limiting OSes usually ignore. Con-
sider a video-conferencing client and a text chat client. If they are both well-written, the video-conferencing
client will inherently require a higher rate than the chat client to achieve acceptable performance, due to
its much heavier use of the network and CPU. But rate-limiting OSes have no way of distinguishing be-
tween these two applications in order to assign rates properly. If rate assignment is done using OS priority
levels, then at the same priority level the video-conferencing client will lack energy while the chat client is
allocated too much. This difficulty makes assigning rates a poor way to prioritize energy usage.

Finally, like frequency governors, rate-limiting fails to recognize differences in hardware energy efficiency
that can cause misallocation of energy between tasks with different priorities. If low-priority tasks are
allowed to run at the fastest and least-efficient CPU frequency setting, even if they are rate limited they
will still consume extra energy that should be reserved for higher-priority tasks. Without controlling the
efficiency of hardware components, rate-limiting again achieves both reduced performance and higher
energy usage. Making a task slower does not necessarily make it run more efficiently.

1.2 — Limitations of Determining Task Deadlines
Another group of research OSes and energy-management approaches try to minimize energy usage while
meeting task-specific deadlines, potentially after introducing some bounded performance degradation or
slack [39, 13, 6, 10, 19, 55, 20]. While reducing application requirements to deadlines is appealingly simple,
it is also a gross oversimplification. Many applications have tasks that do not have strict deadlines, that
can be postponed, or can trade off quality for energy usage when needed; deadline assignment runs in to
many of the same problems as rate-limiting when trying to determine what deadlines to assign to tasks.

Deadline-driven approaches also force the OS to do error-prone guesswork to determine what energy effi-
ciency tradeoffs to make, instead of leveraging application knowledge. On today’s systems, that consist of
multiple components that can be tuned independently, these guesses are more and more likely to be wrong.
A background synchronization task knows when its performance is dependent on the network, CPU, or
memory, but cannot communicate this to the OS. All the OS knows is that it has missed a deadline, and
has to try and determine what hardware component to accelerate. Making the wrong choice wastes energy
without improving performance.

1.3 — Limitations of Performance-Based Hardware Control
Finally, every approach that attempts to manage energy usage must confront the fact that current hardware
interfaces are not designed to facilitate this task. Because the energy consumed by a hardware component
over a fixed time interval depends both on the task and the component’s performance settings, differ-
ent tasks running over the same time interval with the same performance settings can consume different
amounts of energy. Because hardware components expose their energy efficiency tradeoffs through per-
formance settings, managing energy requires the OS to predict the amount of energy a task will consume
before it runs; this is impossible. Because energy is treated as a side effect, rather than a control, there is no
way for the OS to ask hardware to maximize performance within some energy constraint, a fundamental
requirement for energy-management approaches on energy-constrained devices.

1.4 — Achieving Power Agility
In the remainder of our proposal, we present novel solutions to each of the problems identified above that
make power agility possible. To address the inability of frequency governors and rate limiting to allocate
and prioritize energy within the OS, we introduce the concept of inefficiency, described next in Section 2. Be-
cause inefficiency directly reflects differences in hardware component efficiency, it ensures that if tasks run
more slowly they also save energy, allowing effective allocation and prioritization. Second, we introduce
the novel interfaces between the application and OS and OS and hardware required to take the guesswork
out of understanding application requirements and communicating them to hardware components. These
interfaces are described in Section 3. Together they accomplish two things: they ensure that applications
can communicate their performance requirements to the OS (Section 3.1), and that the OS can bound com-
ponent energy usage while allowing hardware to maximize performance (Section 3.2).
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2 — ALLOCATING INEFFICIENCY

Frequency governors, rate limiting, and other OS energy management efforts are limited by by their failure
to differentiate between several components of energy usage that each produce different energy manage-
ment problems. To produce a more useful taxonomy, we divide the total energy required to execute a task
on a device, Etotal , into three components: Etotal = Emin + Eextra, and Eextra = Eper f + Ewaste.

• Emin represents the minimum amount of energy the task required to complete on this device. Once
the choice is made to execute this task, this much energy will eventually be consumed.

• Eper f measures the amount of extra energy the task consumed that improved performance by running
hardware components at faster and less energy-efficient settings.

• Ewaste measures extra energy consumed that did not improve performance. If Ewaste > 0, it implies
that equivalent performance could have been achieved while consuming only Etotal − Ewaste.

We further define inefficiency as Etotal/Emin. An inefficiency of 1.0 indicates the most efficiency execution
possible, while one of 3.0 indicates that three times more energy was used to execute the task than was
strictly necessary2. The division of Etotal into Emin, Eper f and Ewaste produces three distinct and separable
energy management challenges, each requiring a different approach:

2.1 — Energy waste reduction:
The most obvious goal is to eliminate Ewaste, since doing so will not affect performance and only reduce en-
ergy usage or increase battery life. Energy waste occurs when components are tuned incorrectly for a given
workload. For example, for a CPU-bound task, energy waste might occur if the memory was set to run fast
and inefficiently while the CPU was set to run slow and efficiently. Because the the extra energy consumed
by the memory does not significantly improve performance, it is wasted. Eliminating energy waste requires
correctly dividing the energy available to the task between components that expose efficiency tradeoffs. We
describe our new interface that enables applications to rebalance energy usage by making resource requests
in Section 3.1, as well as the tuning libraries and code annotations guiding this process. This interface takes
the OS guesswork out of improving energy-constrained application performance.

2.2 — Energy scheduling:
Because Emin is a direct result of task scheduling we refer to managing Emin as energy scheduling. Once
a task is allowed to run, there is no way to stop it from consuming Emin. While it can be time-shifted,
there are only two ways to reduce Emin: rewrite applications or improve hardware. While the OS is not
in a position to rewrite applications, effective prioritization of energy usage does provide an incentive for
applications developers to produce more energy-efficient applications. However, our power-agile architec-
ture does facilitate hardware improvements by controlling hardware components using energy constraints,
as described in Section 3.2. This approach allows hardware to appear faster as it becomes more energy ef-
ficient without requiring significant changes in how the OS manages energy, while also allowing hardware
components to manage their own energy usage on timescales that are not achievable by the OS.

2.3 — Inefficiency allocation:
Finally, the OS must allocate Eextra between different tasks, which we call inefficiency allocation. For each
task, the OS maintains an inefficiency constraint that bounds the amount of extra energy the task may
use. A low-priority task may have a inefficiency constraint of close to 1.0, forcing it to run as efficiently as
possible, whereas a higher-priority task may be allocated more Eextra to improve its performance. Prior-
itizing Eextra between tasks prioritizes energy usage without preventing tasks from running. Instead, we
require that low-priority tasks run efficiently, while allowing higher-priority tasks to run inefficiently. Our
architecture allows applications to control the balance of energy between components to meet their own
performance requirements, while allowing the OS to maintain control over the total amount of energy used.
Allocating inefficiency also ensures that the only reason tasks slow down is to save energy.

2Because batteries on energy-constrained devices are typically shared by all hardware components, OS inefficiency allocation
considers the inefficiency of the entire device. Inefficiency levels for individual components can also be considered separately, which
we return to in Section 3.
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2.3.1 — Prioritizing inefficiency between tasks: On power agile architectures the OS uses task energy con-
straints to prioritizing energy usage between tasks. Given that task priorities represent a well-established
way of guiding OS resource allocation, we propose to experiment with mapping them directly to ineffi-
ciency constraints. In this way we can leverage all of the existing work on priority determination and
interactivity detection to help manage energy usage along with other OS resources. Tasks may request that
the OS notify them of their assigned inefficiency constraint at any time through a new system call, and the
OS will signal a task when its inefficiency constraint changes.

Allocating inefficiency also addresses another problem faced by rate limiting systems: energy hoarding.
Many rate limiting systems mitigate their difficulties correctly assigning task energy rates by allowing
tasks to keep unused portions of their allocations for later use. This causes its own set of complications.
If the assigned rate is too high, the task can hoard energy that other tasks cannot use. Tasks need not be
malicious to do so: overly-conservative approaches to energy planning that reserve more than the task
needs create the same problem. Rate limiting systems have proposed a number of ad-hoc mechanisms
to address this problem, including leaky buckets—which require their own rates—and making energy
allocations revocable at any time—which defeats the purpose of saving energy for the future.

When allocating inefficiency, we can avoid these problems. The simplest approach is to not return unused
inefficiency allocations, encouraging tasks to use their entire allocation and run as fast as their inefficiency
constraint allows. But because allocating inefficiency does not allow one task to prevent another from run-
ning, we can also safely allow tasks to save inefficiency if they believe that their current energy constraint
is too generous for their needs. We will investigate which of these approaches is superior.

2.3.2 — Allocating inefficiency over time: Many previous OS attempts at managing energy have had
achieving a certain system lifetime as their goal. To achieve a target lifetime, in addition to allocating
energy between tasks, they also allocate energy over time. While we believe that these attempts are mis-
guided if they only time-shift tasks—particularly interactive ones—we can also influence system lifetime
by setting inefficiency constraints. On power-agile systems, the multiplier between task priorities and task
inefficiency constraints controls the rate at which we deplete Eextra and, as a result, the balance between
performance and system lifetime. The higher the multiplier, the faster the device will consume Eextra and
the quicker it will exhaust its battery; the lower, the longer the device will last. We plan to explore ways of
determining the correct multiplier by observing user behavior.

Note that, in contrast with previous approaches, we cannot meet a target lifetime by controlling inefficiency
since this does not control Emin. However, on the smartphone platforms we are proposing to investigate,
we believe that this is a natural result. When subject to heavy use, smartphone batteries will die more
quickly, because the user also plays a direct role in energy allocation.

2.3.3 — Interaction with scheduling: By separating identifying inefficiency and separating Emin from Eextra,
our power-agile architecture should be able to avoid most interactions with the OS scheduler. Tasks can
run whenever the scheduler chooses them, but with the inefficiency constraint assigned to them.

While we would like to avoid interactions with scheduling entirely, there are two cases where it is re-
quired and beneficial. The first, is when components impose significant transition costs to change energy-
performance settings, such as a delay required to migrate a task between big and little cores. The second is
when tuning components that have inherently shared performance features, such as memory, which is cer-
tain to occur on multi-core systems but can also happen on single-core devices. In both cases, it may make
sense to alter the order tasks are run to amortize hardware transition costs or overlap tasks with similar
hardware requirements. We will investigate new ways to do this while preserving as much of the existing
Linux scheduling algorithm as possible.

3 — NOVEL INTERFACES

Achieving power agility also requires novel interfaces between applications, the OS, and hardware. The
new interfaces in our design create a natural separation of concerns between these three energy manage-
ment stakeholders by making allocation of inefficiency between components explicit and simplifying the
task of controlling hardware energy usage. Figure 2 provides an overview of our architecture and the two
new proposed interfaces discussed in this section.
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Figure 2: Our power agile architecture. The size of
the components in the resource requests represent the
balance between component energy usage requested
by the application.

Applications request a balance of energy usage across
components exposing efficiency tradeoffs by passing a
resource request to the OS (Section 3.1). In Figure 2, the
unmodified application has requested a fast CPU and
memory but slow network and storage, whereas the
modified application has requested a fast network but
slow CPU, memory and storage. Resource requests al-
low applications to configure the device explicitly and
free the OS from the difficult task of guessing task per-
formance requirements and cross-component depen-
dencies. We describe how applications can use pro-
grammer annotations, preexisting traces, compiler sup-
port, feedback-driven tuning libraries, or a mixture of
these approaches to make effective resource requests.

The OS maintains control over energy usage by validat-
ing that the resource request does not exceed each ap-
plication’s target inefficiency, as described in Section 2.
If the resource request is valid, it is communicated to
hardware in the form of per-component energy con-
straints (Section 3.2). Energy constraints allow the OS
to control hardware energy usage explicitly and free the OS from having to estimate energy usage based on
performance settings. They also provide the guidance that hardware components on energy-constrained
systems need in order to determine how to maximize their own performance.

3.1 — Application-OS Interface
Operating multiple components that can each trade off performance for energy efficiency requires explicit
application control due to three characteristics of application energy-usage on energy-constrained devices.
First, usage is distributed across multiple components. Figure 3 breaks down energy consumption from
77 PHONELAB smartphones, showing that energy usage is well-distributed, with the display, CPU, 3G and
Wifi radios all accounting for significant fractions. Usage also shows a great deal of interuser variation
resulting from variations in application usage patterns. Since different applications use these components
differently, they will want to tune them differently to manage overall device inefficiency.

Second, application performance needs vary over time. Figure 4 shows cycle-per-instruction (CPI) for
the gzip SPEC2006 benchmark, showing how even this simple application goes through several CPU-
and memory-bound phases during execution. More complex interactive applications will have even more
temporally varying resource needs. Due to this dynamic behavior, applications will want to reallocate
energy usage between components at runtime to achieve good performance.

Third, when multiple energy-proportional components are used by an application, significant energy waste
can occur if they are tuned improperly. Figure 5 shows performance and energy usage curves for a sim-
ulated smartphone with both CPU and memory capable of DVFS3. We compare two SPEC2000 [7] bench-
marks: eon, which is CPU-bound, and art, which is memory-bound. For both benchmarks, the combina-
tion of CPU and memory frequency scaling produces an order-of-magnitude range in both the achieved
speedup—S, computed with respect to the slowest execution and shown with shading—and the device
inefficiency—I, computed as described in Section 2 and shown with contours. However, at each desired
speedup only a single pair of settings—shown by the white line—eliminate Ewaste. All other settings con-
sume energy without improving performance. For example, when running at a speedup of 3, art can
consume between 20 and 50 times as much energy as its most efficient Etotal = Emin execution, showing
both that slow does not mean efficient and the potential for energy waste.

3.1.1 — Resource requests: Eliminating Ewaste requires a way for tasks to explicitly allocate device ineffi-
ciency between hardware components and adjust these allocations as their resource requirements change.

3Server designs are already incorporating DVFS memory to address the rising energy contribution of the memory subsystem, and
we expect next-generation smartphones to follow shortly.
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Figure 3: Per-component energy breakdown for 77 real smartphones collected on PHONELAB. Energy usage is
spread across multiple components and varies significantly between users.

To enable power agility, we propose to invent a new OS interface allowing tasks to make runtime resource
requests. The format of resource requests must be specific enough to identify particular hardware energy-
performance features tasks would like to use, such as initiating a computational sprint [54], general enough
to be used on a variety of power-agile devices, and easy for the OS to use to validate that the task’s resource
request does not exceed its inefficiency allocation. We propose to invent a resource request format that can
be used at the application-OS interfaces that meets these criteria and is flexible enough to incorporate the
new features emerging on Dark Silicon designs.

One promising resource request format we propose to investigate divides the task’s inefficiency allocation
into per-component inefficiency allocations. These bound the energy used by each component in the same
way that the device inefficiency bounds the energy used by the entire device. For example, an CPU ineffi-
ciency allocation of 2.0 indicates that the CPU should not use more than twice the amount of energy that
was required to perform the computation. Section 3.2 describes how and wy we also propose to implement
inefficiency allocation at the OS-hardware interface.

Resource requests in this format also have the benefit of being straightforward for the OS to validate, be-
cause the device inefficiency can be computed as a linear combination of component inefficiencies, each
scaled by the component’s overall contribution to the total energy usage of the device. Given a device con-
sisting of a set of components C = (c1, c2, . . .), with each component ca set to inefficiency level ia

component
and consuming ea in its most efficient state, then the total device inefficiency Idevice can be estimated as
Idevice = ∑a ia

component · ea. Requests for invalid sets of resources will fail and the task will be required to
try again. When lowering a task’s inefficiency allocation, the task will be asked to reallocate inefficiency
by making a new resource request. If this request is invalid, the task will be forced to run at a device
inefficiency of 1.0 until it makes a valid resource request.

3.1.2 — Making effective resource requests: While power-agile architectures require applications to ex-
plicitly manage energy usage by making resource requests, there are multiple ways to accomplish this,
including tuning libraries and code annotations. We will explore both of these options.

Adaptive tuning libraries transparently observe application performance to make resource requests at run-
time and provide a way to support unmodified binaries. We propose to develop a variety of different tuning
algorithms suited to different types of applications or different user expectations. Existing applications can
use a default algorithm or an algorithm selected by their developer. It may even be useful to expose this
choice to the user, allowing them to assign each application a labeled algorithm at install time and change
them during operation, similar to the user-driven adaptation proposed by “application modes” [46].

One example tuning algorithm we propose to evaluate uses a guided search that climbs a performance
gradient. At each time step, it tests the sensitivity of the application performance to a shift in component
inefficiency allocation, using performance feedback from the OS to help select components to target. For
example, if the application has been spending most of its time waiting on the network, the algorithm may
try increasing the inefficiency allocated to network latency and reduce the amount allocated to the CPU
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Figure 4: Example of application transitions. CPI for gzip run as part of the SPEC2006 benchmark suite.

and memory. If performance improves, the algorithm will continue tuning from that point; otherwise, it
will backtrack. This process is repeated at regular intervals.

While tuning libraries are an effective way to support legacy applications, they suffer from many of the
same limitations as attempts to observe application deadlines from below the OS interface. Therefore, we
expect developers to leverage their knowledge to make more effective resource requests. We propose to add
support to Android Java for device description annotations, allowing programmers to request different
mixes of component energy-performance settings directly. For example, an annotation can alert the OS
to the beginning of a computationally-intensive code path, during which radio and storage component
performance can be reduced to allow the CPU and memory to run faster. Compilers or offline profiling
tools may also automatically add explicit annotations to binaries, similar to previous techniques used for
CPU DVFS [67]. Annotations may also be combined with tuning support, providing a way to quickly
override the default behavior and allow more rapid adaptation.

3.1.3 — Resource request traces: Whether the device adaptation is done by a tuning library or direct anno-
tations, the output is time series of resource requests. These traces contain information about application
performance requirements that can be used to improve tuning algorithms, evaluate new hardware designs,
and even to help smartphone users evalutae new models when upgrading. Once we have completed im-
plementing the resource request interface and adaptive tuning libraries, we will instrument the Android
platform used by smartphones on the PHONELAB smartphone testbed to log the resource request traces
made by smartphone applications used by PHONELAB participants. Our primary reason for collecting
these traces is to use them to evaluate the effectiveness of our tuning algorithms, but we also propose to
experiment with using them during smartphone selection, which we describe in more detail in Section 6.3.

3.2 — OS-Hardware Interface
At the hardware interface, instead of treating energy usage as a side-effect of performance settings, we
use energy constraints to explicitly bound component energy usage. This approach has several advantages.
First, it allows the OS to bound energy consumption directly, making it straightforward to ensure that tasks
run within their inefficiency allocation. To accomplish this, we propose to investigate using component in-
efficiency as the mechanism to communicate energy constraints to hardware. Since our proposed resource
request format already uses component inefficiencies to allow applications to express cross-component
balance, after validating the resource request the OS simply communicates these energy constraint settings
to the relevant hardware components. Second, it allows hardware components to maximize performance
under the energy constraint without OS involvement. Power-agile systems will be able to integrate new
hardware energy management features with minimal alterations to the format of resource requests, OS
inefficiency allocation, or application tuning algorithms. This will be increasingly important as new hard-
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Figure 5: Synthetic inefficiency and performance curves for a device with DVFS CPU and memory. To represent
the four-dimensional space, shading is used to indicate speedup S and the labeled contours identify inefficiency I. The
white curve identifies the optimal frequency settings for any desired inefficiency allocation. For both benchmarks, an
order of magnitude performance and energy usage difference can be achieved, but most settings are not optimal.

ware components are already beginning to include advanced features such as computational sprinting [54],
memory DVFS [11] and 3G tail adaptation [68]. As Dark Silicon promises to expand this space even further,
a better energy management interface between the OS and hardware is needed.

3.2.1 — Energy constraints using inefficiency: When a hardware component is assigned an energy con-
straint, it begins trying to maximize performance under that constraint and continues until the constraint
is changed. Since the energy consumed depends on workload characteristics that hardware components
cannot predict, meeting the constraint is an adaptive process and components will tend to converge to it
over time. We propose to invent the algorithms necessary to perform this adaptation, focusing on rapid
convergence which will allow energy constraints to be changed often without incurring significant error.

In order to bound hardware energy usage using inefficiency, each component must continuously estimate
Emin. For active portions of energy consumption, such as the energy used by each CPU instruction, a simple
running total may be sufficient. Idle energy is somewhat more complex to account for because it depends
on the amount of time required to execute a task, which will vary based on the inefficiency constraint the
hardware component is assigned, requiring a scaling factor to estimate correctly. We will experiment with
novel techniques to estimate inefficiency in components simulated by gem5.

While components should not exceed the energy constraint, they may not always be able to meet it; it might
be too high relative to the task’s actual energy usage. For example, if a task does not use the memory, than
any inefficiency setting much larger than 1.0 will be difficult for the memory to meet, even if it it completes
the work is it assigned as quickly and inefficiently as possible. Since this feedback can indicate that energy
is not correctly allocated between multiple components, we will experiment with allowing hardware to
provide information to the OS about the inefficiency that is actually achieved during a period of time.

3.2.2 — Supporting legacy hardware: While we believe that energy constraints are the right interface for
energy management on future hardware components, we also want to enable power agility on existing
devices. To do this, we propose to implement energy constraints in open source device drivers for existing
smartphone hardware components. These drivers will have to determine the performance settings required
to meet the inefficiency constraint and monitor energy usage in the way appropriate the component that
they support. This temporary solution allows us to bring power agility to existing devices.
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4 — MEASURING AGILITY

To evaluate power-agile systems, we must define power agility. And because power agility relies on ca-
pabilities of the device’s individual hardware components, evaluating power agile systems also requires
an empirical definition of energy proportionality. Surprisingly, despite widespread interest in energy-
proportional systems, a precise definition for this term does not exist. Below we first define power agility
and then provide an operational definition of energy proportionality.

4.1 — Defining Power Agility
We define power agility as the ability of applications, the OS, and hardware to collaborate to manage en-
ergy usage on devices consisting of multiple energy-proportional components. Given the battery-powered
nature of the mobile devices we are targeting, we use energy as our constraint and performance as our
maximization goal4. In general, the energy and performance of a task depend on the device’s hardware
capabilities and how they are used. Given a device consisting of a set of components C = (c1, c2, . . . , ci),
with each component ci presenting one or more power-performance levels ci,1, ci,2, . . . , ci,j, we define a tun-
ing strategy S = ((t0, ci,j), (t1, ck,l), . . .) as the time series of component power-performance levels that are
used during the execution of the task, with (ti, cj,k) indicating that component cj was set to state k at time
ti. Then given a task T, energy constraint Emax, and performance measure P, the most power-agile tuning
strategy is the one that maximizes P within the energy constraint. Similarly, the most power-agile device
for this task is the one where the most power-agile tuning strategy produces the best performance. Our
definition allows us to measure power agility while varying both device capabilities and tuning strategies.

4.2 — Defining Energy Proportionality
The degree to which a device can achieve power agility depends on the energy proportionality of its hard-
ware components. As Table 1 shows, multiple components are performance proportional and many can
trade off multiple performance aspects with energy usage, but specific components achieve this in different
ways, to different extents, and with differing overheads. A memory chip might decrease energy usage by
reducing either capacity or bandwidth. A CPU might only be able to scale frequency and voltage through
a limited range. A heterogeneous multi-core architecture might offer a low-power core but impose a tran-
sition cost to activate it. Despite the richness of the power-performance design space, energy-proportional
components are produced without considering how they will integrate into a complete device.

Evaluating energy-proportional components requires overcoming a basic challenge: a precise empirical
definition of energy proportionality must be formulated and tested. This definition will allow us to evaluate
our efforts and guide design of future energy-proportional components, power-agile architectures, and
power agility algorithms. More specifically, we seek a definition of energy proportionality allowing device
architects to choose components with useful energy-saving features and energy-performance knobs.

To motivate our definition, we introduce two candidate hypothetical energy-proportional memory chips.
Figure 6 displays the relationship between energy consumption and performance for each. We note that:

1. Performance has multiple dimensions. The banked memory chip achieves proportionality by pow-
ering down transistors, trading off capacity for energy. The frequency-scaled chip achieves propor-
tionality by reducing transistor voltage, trading off latency for energy.

2. The range over which components are proportional varies. The banked-memory chip is energy-
proportional from 125 to 500 mW; the frequency-scaled chip from 250 to 500 mW.

3. The smoothness with which components trade power for performance varies. The banked-memory
chip requires costly power-gating circuitry, meaning that it shuts down memory only in large 256 MB
chunks. In contrast, the frequency-scaled chip can tune its operating frequency smoothly.

The first observation motivates us to split the energy-proportionality metric along performance axes ap-
propriate for each component. Many common axes will likely emerge driven by transistor fundamentals:

4Energy management approaches aimed at servers frequently use performance as the constraint while trying to minimize energy
usage, which is more appropriate for wall-powered machines frequently operating under service-level agreements. While our focus
is on mobile devices, our definition can easily be reframed for performance-constrained systems.
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Figure 6: Example power-performance curves for two 1GB energy-proportional memory chips. Red filled areas
show the degree of dis-proportionality with respect to an ideal component, as discussed in Section 4.2.

memory and networking components have both latency and throughput axes, where output devices have
quality axes. After separating performance attributes, we measure the proportionality of a real component
by comparing it to an ideal component. For the banked memory chip, the idealized component could dis-
able individual bytes of memory. For the frequency-scaled chip, the idealized component would smoothly
scale to zero as usage decreased. While ideal components are not achievable—both of these hypothetical
memory chips ignore circuit realities—they serve as useful benchmarks.

Finally, given a single performance parameter P, the measured relationship between energy and perfor-
mance for a candidate component C EC(P), and the idealized relationship between energy and performance
for an idealized component I EI(P), we define the disproportionality D as: D =

∫
P EC(P)dP− EIdeal(P)dP.

Figure 6 graphically illustrates the disproportionality calculation for the two candidate memory chips.

5 — RELATED WORK

We are not aware of a similar cross-layer approach to energy management that engages applications, the
OS, and hardware, but many recent advances are complementary to our work and can be incorporated into
power-agile architectures. Examples include work on energy-aware management [49], sleeping during idle
periods to conserve power [47], reducing storage energy consumption through dynamic consolidation [64],
and delivering energy-proportional computing using non-energy-proportional components [62]. Our own
previous work on achieving power-agility through heterogeneity [8] is also complementary, although we
anticipate that the continuing addition of energy-management features to single components will make
heterogeneity-based adaptation less necessary on future devices.

5.1 — Single-Component Scaling
While tuning single components is not sufficient to provide power agility, research into single component
scaling can inform the design of hardware controllers that attempt to maximize performance under an
energy constraint. Several techniques for homogeneous multi-core processors have been studied that use
predictors such as instructions-per-cycle (IPC) to decide when to use DVFS or migrate threads [56, 4, 32, 31].
These hardware-only approaches are not aware of the effect on other threads and application-level perfor-
mance. Heterogeneous multicore processors containing cores with different energy-performance tradeoffs
pose a challenge to scheduling. The PIE model captures the amount of instruction level parallelism and
memory parallelism in a workload and predicts if it will perform better on a big or little core [63].

As the contribution of memory to overall system energy usage has increased, multiple systems have tried
to control memory energy consumption [60, 70, 16, 37, 48, 45]. Many efforts focus on adapting to various
active and low power states of memory based on application memory performance requirements, while
some [11, 14, 15] scale memory frequency. MemScale [15] scales voltage for memory channels and the
memory controller but scales only frequency for DRAM devices. A separate approach [11] scales voltage
and frequency through a control algorithm that runs periodically to choose the best settings.
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5.2 — Multi-Component Scaling
Integrated power management of CPU and memory are considered in recent works [39, 13, 6, 10, 19, 55, 20].
Gupta et al. [39] explore micro-architectural adaptations and idle low-power states of memory to conserve
energy within performance degradation bounds. Xiaobo et al. [19] evaluate gains in energy consumption
using DVS for CPU and low power states of memory.

One approach scaling both CPU and memory is CoScale [13], which implements DVFS for memory chan-
nels and the memory controller and FS for DRAM devices. Its control algorithm profiles application per-
formance by reading performance counters at the beginning of every scheduling quantum. Using a greedy
heuristic, CoScale attempts to choose frequency settings for both the CPU and memory that minimum
energy usage without violating a performance bound. While CoScale advances the state-of-the-art by con-
sidering multiple components during tuning, it suffers from the same problems with application visibility
and hardware control as many other systems.

5.3 — Systems and Software Approaches
Responding to the energy limitations of battery-powered mobile and embedded devices, researchers in the
mobile systems and sensor networking communities have proposed energy-aware operating systems and
decentralized energy management strategies. networks [9, 36, 65, 59, 44]. Systems such as Odyssey [22],
PowerScope [23], Currentcy [69], Pixie [41], Eon [59], Levels [36], and Cinder [57], have addressed mea-
suring or adapting to energy variations on battery-powered devices using various kinds of rate-limiting
and guided application adaptation. None of these systems have overcome the problems we have identified
with rate limiting or enabled the kind of cross-component adaptation power agility requires.

FAWN [2] and Amdahl-balanced blades [61] represent single systems where cross-component energy usage
and performance have been balanced for a single application, not through online adaptation, but through
static hardware choices. They show the potential of power agility to save energy but require workloads
with fixed energy balance requirements. Other systems, such as Quanto [24] and Carat [52] provide new
ways of profiling and measuring application energy usage but not not attempt to control it.

6 — BROADER IMPACTS

The broader impact components of our proposal (1) enhance research infrastructure through structured
dissemination of research results; (2) advance discovery and understanding by promoting teaching and
learning; and (3) contribute to shared educational infrastructure.

6.1 — Component Power Database
Component energy usage information is difficult to obtain. Because datasheets rarely present useful power
numbers, determining the energy proportionality of a particular component requires acquiring and mea-
suring it under appropriate workloads. This is a time-consuming task and prone to repetition when results
are not distributed. Unfortunately, power measurements—no matter how thorough—are not considered
research results and frequently not disseminated. To address this problem, we will establish a shared
database of component power measurements, seeded with output of our measurements of component
energy proportionality. Aggregating this information will greatly accelerate research in this area by elimi-
nating the duplication of effort necessary to understand component power consumption. Multiple groups
will have a place to share power measurements gathered using common experimental procedures under
identical workloads, enabling “apples to apples” component comparisons. We will contribute our own
power measurements and workloads to the database, and advertise its availability to spur adoption.

6.2 — gem5 Development
The team will conduct many of its simulation studies using the gem5 full system simulator and will have to
make significant changes to gem5; these changes will be released to the large gem5 user base. The simulation
environment is used widely by the research community and industry, including by ARM, Intel, IBM, HP,
and AMD [5]. There is no existing simulation environment that supports cross-layer power management
from the application, OS to hardware. System designers and researchers will benefit from the hardware
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component models; interface and control methodologies; driver and operating system kernels that will be
contributed by the research team. The team is already in active collaboration with researchers at ARM,
former colleagues of co-PI Hempstead, who regularly contribute to gem5.

6.3 — Improving Smartphone Selection and Design
The resource request traces described in Section 3.1.3 that emerge as an output of tuning and code annota-
tion are primarily used by the OS to balance energy usage between components. However, these traces are
also valuable in two other ways: helping users choose new phones and companies design better devices.

Today’s consumers face more and more choices in the smartphone market, but lack ways to determine
which devices are the best fit for their applications and usage patterns. By aggregating their resource
request traces and matching them against the energy-saving features of smartphone models under consid-
eration, users can be guided toward smartphones with necessary features and without unnecessary ones,
and where the applications they use will perform well. Aggregated across multiple users, resource re-
quest traces can help hardware vendors determine the need for new energy-saving features and identify
performance bottlenecks, leading to better phone designs.

6.4 — Curriculum Development Activities
Beginning in Year 2 the co-PIs will co-teach a joint graduate course entitled “Power Agile Computing:
Architecture Design and System Support”. The course will focus on the hardware-software co-design is-
sues relevant to power-agile architectures. Enrolled students will undertake research projects spanning the
hardware-software divide in interinstitution groups.

Classroom time will be divided between presenting and discussing relevant related work and modules
specifically addressing relevant research outputs of this project. Video conferencing will be used to link
the separate classrooms. In Year 2, the gem5 simulator with integrated component power models and a
set of appropriate workloads will be available, and the course will address resource requests and tuning
algorithms. Year 3 will feature similar tools but focus on hardware energy constraints. Finally, in Year 4
the project will focus on integrating and evaluating the overall power agile system. This course will also
develop two essential engineering skills. First, it will build understanding between the hardware and
software communities. Second, it will teach students the tools and management skills necessary to manage
remote collaborations, critical in the increasingly global technology landscape.

The instructors will be able to leverage the power-aware material designed by co-PI Hempstead for his
course at Drexel: “ECEC 623: Advanced Computer Architecture”. Using the textbook by Kaxiras and
Martonosi and current research papers, the course introduces students to mechanisms of power consump-
tion and power-management techniques [34]. Students complete independent projects which have in-
cluded low-power circuit design, power measurement of desktop and mobile systems, and learning-based
power models for GPUs.

6.5 — Diversity and Outreach
When admitting graduate students, the co-PIs are inspired by the approach of the CCC/CRA NSF-funded
CI Fellows program, which improved representation of women and traditionally-underrepresented mi-
norities increased simply by reviewing those applications first. The co-PIs are copying this approach when
admitting graduate students and recruiting undergraduates. Over the past year, seven women have con-
tributed to our research groups: Rizwana Begum (Drexel), a PhD candidate on this project; Maria Gonzalez
(Drexel), an undergraduate REU student; Vinu Charanya and Anuja Raval (University at Buffalo), Masters
students; Sonali Batra and Anudipa Maiti (University at Buffalo), PhD students; and Na Gong (University
at Buffalo), a PhD student who contributed directly to preliminary work on this project. We have now
expanded our efforts to recruit females and underrepresented minorities earlier in their careers.

Both Drexel University and the University at Buffalo, with their large population of undergraduates from
underrepresented groups, are excellent places to cultivate future researchers. This year, co-PI Hempstead
is serving as a mentor for a Liberty Scholar, an underprivileged student from Philadelphia receiving a full
scholarship from Drexel. As research has shown, it is through personal contact, exposure to challenging
problems and mentoring that undergraduates come to consider research as a promising career [1, 12].
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6.5.1 — Undergraduate Research: The co-PIs are committed to involving undergraduate students in re-
search. Since arriving at Drexel three years ago, co-PI Hempstead has involved four undergraduate stu-
dents in research resulting in a publication [51]. In the past year, Co-PI Challen has involved two talented
undergraduates in the development of PHONELAB and is overseeing research by a third on new interac-
tive instructional techniques. Co-PI Hempstead has mentored undergraduate project teams—including a
freshmen team and a senior design team—working on power-agile design projects. As a general philoso-
phy, we integrate undergraduates into our research team by inviting them to participate in weekly paper
discussions and giving them development tasks appropriate to their training.

7 — QUALIFICATIONS, DELIVERABLES, AND PLAN

In this section we describe why we are qualified to undertake this project, list project deliverables, and
present a plan outlining how we will complete the required tasks within four years.

7.1 — Qualifications and Prior Support
Co-PIs Challen and Hempstead are young investigators that bring both a history of successful collaboration
and complementary experience above and below the OS-hardware interface to the project.

7.1.1 — Geoffrey Challen wrote a dissertation on energy management for embedded sensor systems.
Along with co-PI Hempstead, he developed PowerTOSSIM [58], an augmented version of the TinyOS [29]
simulator TOSSIM [38] enabling application power profiling. Challen’s work on Lance, IDEA and Pelo-
ton addressed energy consumption at the network—rather than node—level. Lance [66] showed that
data-intensive sensor network applications must consider both the cost and value of information when
collecting data, and proposed a novel optimization heuristic enabling near-optimal online performance.
IDEA [9] demonstrated that a network-wide energy coordination layer could facilitate energy optimiza-
tions impossible for a single node to perform alone. Peloton [65] proposed a distributed operating system
for coordinated resource management built on state sharing, a distributed energy ticket abstraction, and
neighborhood ticket management.

Challen’s recent work focuses on smartphone usage characterization using data collected on PHONE-
LAB [50]. His group has designed and deployed software to operate the testbed, and a usage character-
ization experiment collecting a variety of useful data in order to begin active public experimentation. His
current and prior NSF projects include:

1. PhoneLab: A Programmable Participatory Smartphone Testbed (CI-ADDO-NEW-1205656, $1.3M,
06/01/2012–05/31/2015)—Co-PI Challen leads the PHONELAB project along with co-investigators from
the University at Buffalo. PHONELAB is a programmable smartphone testbed providing the power,
scale, and realism required to evaluate mobile systems research. Consisting of 288 smartphones,
PHONELAB opens for public experimentation in October, 2013.

2. Travel Support for SenSys 2010 (CNS-NeTS, $15,000, 10/01/2010–09/30/2011. Co-PI Challen dis-
tributed NSF funding supporting student travel to SenSys’10.

7.1.2 — Mark Hempstead has experience with wireless sensor networks (WSNs), high performance micro-
processors, and low power circuit design. Hempstead developed a new system architecture for WSNs in-
corporating application accelerators for regular tasks and power gating circuits to reduce leakage power [27].
A prototype was manufactured in 130nm CMOS and measured to generate a detailed power model across
a wide voltage-frequency range [26, 28]. Measurements revealed a need for a new memory structure called
the accelerator store, that dynamically allocates memory to accelerators and automatically manages leakage
power [42, 43]. Recent work has leveraged the circuit design experience in Hempstead’s group at Drexel to
investigate structures for register renaming and file gating in modern processors [3].

Hempstead’s recent work has focused on applying heterogeneous and accelerator-based computing to
more general purpose domains. His group has developed a custom accelerator for ultra-sound image
processing and evaluated it against CPU and GPU implementations in a recent CASES paper [51]. With
co-PI Challen, Hempstead’s group has also looked at using heterogeneous components to create an energy-
proportional system [8]. His current and prior NSF projects include:
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1. AfterBurner: Efficient Performance Scaling via Post-Retirement Processing (CCF-1017654, $119K,
09/01/2010–01/01/2012)—Hempstead lead the AfterBurner project with Professor Amir Roth from the
University of Pennsylvania. AfterBurner targets regions of low instruction-level parallelism (ILP)
through techniques such as speculative retirement and selective re-execution with the aim to increase
the throughput of modern microprocessors. Recent work has demonstrated how reference counting
in the rename stage of a out-of-order microprocessor can enable power efficient techniques, such as
register file power gating, checkpointing, and move elimination [3]. Support from this project has
resulted in two additional publications [8, 51].

7.2 — Deliverables
Our main project deliverable will be Agile Android, a complete power-agile smartphone platform for An-
droid devices running on both real hardware and an augmented gem5 simulator. Agile Android provides a
platform to experiment with the novel interfaces, algorithms, and mechanisms we have described, but re-
quires changes to Linux, the Android platform, and the ability to experiment with hardware modifications
which we propose to accomplish by using a cycle-accurate hardware simulator.

Inefficiency allocation will be added to the Linux kernel, along with the resource request interface between
applications and the OS; and the energy constraint interface between the OS and simulated hardware.
To support legacy hardware and allow us to experiment on real smartphones, we will implement energy
constraints for existing hardware components within their device drivers, as described previously.

Support for resource request annotations will be added to the Android platform, and several popular open-
source apps included in the platform, including the browser and email client, will be annotated to make
resource requests intelligently as they transition between different execution phases. We will also provide
a tuning library that implements several different algorithms for generating resource requests.

We will use the popular gem5 simulator to enable rapid prototyping of our changes at the hardware inter-
face, including energy constraints and the hardware support they require. To experiment with emerging
hardware energy management features not yet found on real devices, we will implement several in gem5.

7.3 — Plan
How the co-PIs will manage an effective inter-institution collaboration is described in the separate collab-
oration plan, including how research tasks will be divided between the systems team at the University at
Buffalo and the hardware team at Drexel University. Below we present a preliminary task plan describing
how research and broader impact tasks will be scheduled over four years.

7.3.1 — Year 1: We will begin by investigating novel interfaces (§ 3) through implementing and testing
prototypes. We will also need to determine the format of resource requests (§ 3.1.1), and begin exploring
algorithms for our tuning library (§ 3.1.2). In the first year we will also initiate our public component power
database (§ 6.1) and begin entering measurements.

7.3.2 — Year 2: During the second year we will focus on designing effective algorithms to allocate efficiency
and prioritize allocations between tasks (§ 2), while continuing work on the interfaces begun in the first year.
We will also add inefficiency interfaces to several existing device drivers allowing experimentation on real
hardware (§ 3.2.2), allowing us to gather resource request traces on PHONELAB (§ 3.1.3). We will also offer
the joint graduate course for the first time (§ 6.4).

7.3.3 — Year 3: In the third year work will continue on inefficiency allocation while beginning implement-
ing support for hardware energy constraints (§ 3.2) and gem5 support for advanced energy-saving features
(§ 6.2). We will also begin testing our definitions of power agility and energy proportionality (§ 4) so that
they are ready to evaluate the complete system. Finally, we will use the resource request traces gathered in
the previous year both to continue improving our resource request algorithms and improving smartphone
selection and design (§ 6.3).

7.3.4 — Year 4: Finally, we will integrate all of the innovations into the complete Agile Android platform
and perform end-to-end testing and evaluation. We also reserve time in final project year to complete any
delayed tasks and ensure that our results are widely disseminated.
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