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Abstract—Process variation can cause the performance and
energy consumption of smartphones of the same model to vary
significantly. While process variation has been studied in detail,
the effects on smartphone performance have not been quantified
and evaluated. In this work we study the performance and energy
differences of 5 recent SoC generations caused by underlying
process variation.

We make two important contributions. First, we present a
methodology to construct a temperature-stabilized environment
to perform repeatable power and performance measurements.
Studying power-performance characteristics of smartphones is
difficult. Running a benchmark back-to-back often produces sig-
nificantly different results due to heat. Temperature, both device
and ambient, play a significant role in determining performance
and energy. Our methodology allows us to control for various
factors and isolate the effects of the underlying process variation.
We then apply our methodology to investigate performance and
energy characteristics of several recent generations of smart-
phone CPUs that result from process variation. Our results show
that devices of the same model may exhibit differences of 10%
and 12% difference in performance and energy over a fixed-
duration workload.

I. INTRODUCTION

Process variation has been extensively studied over the
past few decades and its sources are well-understood [1],
[2], [3], [4]. It is even being exploited on large multicore
chips [5] and dark silicon chip multi-processors [6] to compute
optimal mappings for threads and cores. But on the ubiquitous
smartphones that are in production and in users’ hands today,
the effects and consequences of process variation are less
studied and less known.

No two chips are produced equal. This is an inescapable
fact of the chip manufacturing process, and increasing chip
complexity and reducing transistor sizes have exacerbated this
inequality. Variations in the underlying transistors can cause
devices of the same make and model to exhibit different
thermal characteristics. This in turn can lead to some devices
to heat up more quickly which forces them to slow down.
As a result, your smartphone could be up to 20% worse in
energy and performance than other devices of the same make
and model [7]. Unlike desktop processors, where significant
process variations result in frequency and pricing differences,
the mobile market appears to paper over them. Consequently,
chips of varying degrees of quality find their way into devices
that are identical in appearance and price.

By ensuring that all their CPUs operate at the same
frequency—a process known as voltage binning [8]—
manufacturers create chips that are indistinguishable to an

unassuming consumer. In this process, all CPUs are configured
to have the same operating frequency while their individual
supply voltages are tweaked as necessary to ensure stable oper-
ation. From the consumer’s perspective, their phone appears to
be running just as fast as any other phone of the same model.
Behind the scenes, however, the phone may be consuming
more energy to do so, converting electrical energy to thermal
energy and thus heating up in the users hand.

For decades, system builders have effectively hidden these
effects through the use of active cooling, careful case design,
and controlled thermal environments. Unfortunately, smart-
phones frustrate all of the strategies established to gain thermal
control over hot CPUs. Unlike stationary devices and even
larger mobile devices, smartphones get used in uncontrolled
thermal environments—everywhere from hot cars to cold
winter nights. And smartphones are too small to incorporate
the active cooling components commonly found on servers,
desktops, and laptops, such as fans or large heat sinks. At
their top frequencies, the heat generated by smartphone CPUs
can reach their thermal limits within seconds of beginning
a compute-intensive task. Once these limits are reached,
throttling strategies such as disabling cores or reducing CPU
frequencies must be used to cool the device, which in turn
degrades performance.

Prior to the advent of ARM’s big.LITTLE, chips would
often expose their binning information in the form of a
number. Smartphone enthusiasts would use these bin numbers
to determine the voltages that the chip operated at, and in some
cases end up drawing the wrong conclusions [9]. Srinivasa
et al [7] described how, contrary to popular belief, devices
that operated at the highest voltages were often the most
performant. Currently, to the best of our knowledge, chips
no longer expose such binning information. While variations
in voltage-frequency tables continue to exist, they are often
hidden from the end-user.

To understand the characteristics of their smartphones, users
today resort to running benchmarks and comparing results.
In the best case scenario, comparisons can be made against
devices of the same model as that of the user’s. In the worst
case, users are left with a score and the scores of the top 50
device models overall [10]—a list in which their model may
not even figure. Even in the best case scenario, the results are
skewed in favor of lower ambient temperatures. The score of
a good CPU would be no match to the score of a bad CPU
if the bad CPU ran the benchmark at a significantly lower
ambient temperature. Guo et al [11] discusses how putting a



smartphone in a refrigerator could improve the overall score
of Antutu [12], a popular benchmark, by more than 60%.
Furthermore, running the same benchmark back-to-back would
yield significantly different scores as the second run begins
with a warm device—a consequence of the first run.

In this work, we measure and evaluate the performance
and energy differences caused by process variation on several
recent generations of smartphone SoCs. While smartphone
manufacturers and power users may have moved on to the
latest SoC, many others including researchers continue to use
SoCs that were released a few years ago. The Nexus 5, first
released in 2013, continues to be in the top 10 active devices
that use the open-source LineageOS [13], a fork of the popular
Cyanogenmod operating system.

We make the following contributions as part of this work:
• An experimental methodology and setup that is capable of

identifying and measuring process variation on smartphone
at the system level (§ III).

• Experimental analysis and results of 5 out of the possible 8
generations of Qualcomm SoCs released since 2013 (§ IV)
In particular our results show that process variation led
to energy-performance variations as high as 20% in older
SoCs. While less profound, it continues to be significant
in recent smartphone SoCs with observed performance and
energy variations of 5% and 10% respectively.

II. BACKGROUND & MOTIVATION

Our interest in studying process variations arose from our
inability to reproduce performance results that we had earlier
observed while running a CPU intensive benchmark. By swap-
ping the SoC while keeping the workload, device casing, and
battery constant, we confirmed that the SoC was the source of
variation. Further experimentation revealed that the variations
were caused due to intrinsic properties of the SoC.

The process of segregating CPUs based on its manufacturing
quality and electrical characteristics is known as CPU binning.
Note that because multiple cores that are part of a single
CPU are drawn from the same patch of silicon, differences are
between entire CPUs and not between cores. The two major
binning techniques used by manufacturers are speed binning
and voltage binning. When chips are manufactured, they are
first tested to identify their stable operating frequencies. If a
chip does not meet the necessary timing constraints or fails
to operate at the expected frequency, the operating frequency
is lowered until it passes the tests. The chips are then sorted
into bins and labeled according to their speed. This process
is called speed binning. They are then sold at price points
proportional to their speed bin [8].

Speed binning labels chips according to their speed. Voltage
binning keeps the frequency fixed across all chips and adjusts
the voltage across bins. Voltage binning is based on the fact
that both speed and leakage power of a transistor are a function
of the supply voltage. Slow transistors—ones with larger gate
lengths—leak less, while fast transistors—ones with shorter
gate lengths—leak more. Manufacturers thus divide the chips
into voltage bins where slower chips are binned at higher

voltage so as to support the required operating frequency,
while faster chips are binned at lower voltage in order to
reduce their already high energy consumption. We believe that
this is done in order to try and provide consistent performance
(in terms of speed) across all devices using the same SoC.

Table I lists voltages used for multiple frequencies across
bins on a Nexus 5 device. Bin-0 has the slowest transistors
while bin-6 transistors leak the most. Therefore, bin-6 operates
at lowest voltage while bin-0 voltage is increased to enable
equal performance as bin-6. Manufacturers thus use this tech-
nique to attempt to enable consistent performance across all
bins. Note that the process controls for speed, so both the bin-0
and bin-6 CPUs provide the same set of operating frequencies.

Voltage Frequency (MHz)
(mV) 300 729 960 1574 2265

Bin-0 800 835 865 965 1100
Bin-1 800 820 850 945 1075
Bin-2 775 805 835 925 1050
Bin-3 775 790 820 910 1025
Bin-4 775 780 810 895 1000
Bin-5 750 770 800 880 975
Bin-6 750 760 790 870 950

TABLE I: Voltage vs. Frequency across bins. Voltages for various
frequency levels across bins for Nexus 5 as listed in kernel sources.

Different transistor properties combined with varying oper-
ating voltages leads to differences in the thermal characteristics
between various CPU bins. Despite the manufacturer’s efforts,
these thermal characteristics in turn result in variations in
both energy consumption and performance. Figure 1 describes
the energy characteristics of the different CPU bins on the
Nexus 5. It plots the energy consumption of various Nexus 5
bins while performing a fixed CPU intensive workload. From
the figure, we see that bin-4 consumes about 20% more energy
than bin-0 while also taking ≈20% more time to do the same
amount of work due to thermal throttling.

Ambient temperature also plays a crucial role in determining
the amount of energy consumed to do a certain amount of
work. The leakage current of transistors is proportional to
temperature [14]. Transistors that leak more also generate heat
at faster rate compared to those with lower leakage. To make
matters worse, in cases where the cooling rate is not increased,
the higher heat dissipation increases the temperature of the
device which in turn creates a feedback loop that increases
leakage current. Figure 2 describes this trend for two different
devices. Both devices consume up to 30% additional energy
to do the same work at higher ambient temperatures.

Being aware of the differences between seemingly-identical
devices of the same make and model is important, but being
able to identify them is paramount. Detecting these differences
will benefit researchers who run experiments on a small set
of devices and extrapolate their results to larger sets, and can
help consumers understand the range of quality for a particular
device model.

III. DESIGN & METHODOLOGY

Existing benchmarks are insufficient to measure underlying
transistor differences as they don’t consider temperatures—
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Fig. 1: Energy, performance and temperature variation across CPU bins of Nexus 5. Bin-4 consumes 20% more energy while also
taking 18% longer due to thermal throttling. Once thermal limits of 80◦C are reached, one CPU core is shut down.
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Fig. 2: Energy scaling on two different devices at max frequency. Differences in ambient temperature can cause an increase of 25% or
more energy consumption to do the same work. This effect is observed across devices.

neither device nor ambient. We designed our benchmark-
ing technique, ACCUBENCH, to reliably quantify the energy-
performance characteristics of smartphone CPUs and attempt
to expose the underlying transistor differences. We expose
transistor variations by running a CPU intensive workload and
comparing its results with those from other devices of the same
model. The idea here is that a CPU with bad transistors would
generate more heat and thereby yield lower performance thus
scoring less in our CPU intensive workload.

The ACCUBENCH technique can be broken down as follows:
• Warm up the CPU for fixed time
• Perform cooldown until CPU reports target temperature
• Run workload for fixed time

A problem with existing benchmarks is that they produce
very different results on the same CPU depending on whether
the CPU was previously idle or under use. The warmup phase
mitigates this by synthetically generating heat and warming
up the CPU. Thus, CPUs that were idle become warm while
CPUs that were previously warm remain so. The cooldown
phase ensures that the workload phases of all experimental
iterations across devices are run under similar thermal states.
Finally, the main CPU-intensive workload is executed.

The entire technique is packaged into an app that could
be invoked via an Android intent. At its core, our app uses
a WebView and all of the core functionality was written

in JavaScript. This JavaScript code uses APIs exposed by
the app to perform restricted operations such as reading the
CPU temperature, acquiring wakelocks, logging and storing
experimental logs. The benefit of writing the app in JavaScript
is that the app can be easily updated by the backend without
requiring the device to be connected via USB. With this
approach, the latest JavaScript code is pulled as part of the
web page and executed every time the benchmark is invoked.

Both the warmup and workload consist of running a CPU
intensive task on all available CPU cores, for a fixed duration
of time. In our experiments, the warmup phase was configured
to run for 3 minutes to try and allow an idle CPU to heat up
to the same state as a busy CPU. A busy CPU, on the other
hand, would throttle and continue to maintain its heated state.
This helps minimize the performance variance that can occur
between the first experimental iteration and the subsequent
iterations, as the first iteration normally had a cold start. We
found that a warmup duration of 3 minutes was sufficient for
obtaining consistent results. We chose a 5 minute duration for
Tworkload to ensure that devices has ample time to heat up
and exhibit any variations that may occur due to their thermal
differences. The CPU intensive task consists of computing the
digits of π in a loop on all available CPUs. Specifically, we
compute the first 4,285 digits of π. This number was chosen
as it was estimated to take roughly 1 second to compute at the
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highest frequency on the Nexus 6. Performance is measured
by the number of iterations the device is able to complete
across all cores within Tworkload.

When the intent is triggered, the app acquires a wakelock
to ensure the device does not sleep and begins the CPU
warmup phase. As soon as the CPU warmup is completed, the
device releases the wakelock and starts the cooldown phase.
In this phase, the device enters into a sleep state and wakes up
momentarily every 5 seconds to poll the temperature sensor.
As described earlier, this phase lasts until the temperature
sensor reports a value that is below a pre-determined target
temperature at which to start the workload. Figure 4 depicts the
various events that occur during our ACCUBENCH technique.

Our experiments were performed on the Nexus 5, Nexus 6,
Nexus 6P, LG G5 and Google Pixel handsets. The Nexus 5
and Nexus 6 ran Android 7.1 (Nougat) while the others ran
LineageOS 15.1 Android 8.0 (Oreo). The reason for selecting
LineageOS over stock Android were purely based on a simpler
building and flashing experience.

To isolate the thermal effects of the CPU, Bluetooth,
Radio and location services were disabled on every device.
Additionally, the phone was locked thereby ensuring that the
display was off during an experiment. In our custom-built
version of the modular LineageOS, all apps that used Wi-Fi
in the background were either disabled or removed entirely.
This included auto-updates as well as all Google apps and
services. Given the CPU-intensive nature of our workload,
we are confident that the impact of other components such
as DSP chips and memory controllers remained constant, if
not negligible, throughout our experiments. Finally, we used
the same enclosure for all experiments on each SoC. In other
words, all Nexus 5 chips were tested within one Nexus 5 case
and so on.

Since the operating system may alter device behavior based
on battery conditions, we decided to eliminate this source of
variance by powering our devices via the Monsoon Power
Monitor [15]. We configured the Monsoon to provide the nom-
inal voltage for each device as specified by the manufacturer.

As earlier studies such as [11] and [7] have shown, ambient
temperature can play a crucial role in determining device per-
formance. Following the best practices laid down by previous
studies, all our experiments were performed in a controlled
thermal environment which we refer to as THERMABOX.
Temperature inside the THERMABOX was controlled using
a RaspberryPi which measured the current temperature via
a temperature probe. This RaspberryPi controller was also
connected to a heating and cooling element which enabled
it to regulate temperature within the THERMABOX. Heating
and cooling the THERMABOX was achieved by power cycling
a compressor and a 250W halogen lamp respectively. Figure 3
shows this setup.

We performed two sets of experiments on each chip, both
using our ACCUBENCH technique. First, we allowed the CPU
cores to run unconstrained—without frequency throttling—and
measured performance. The underlying transistor variations
would cause differences in leakage current which would in

1
2
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5

Fig. 3: Controlled thermal environment. All our experiments were
run inside a controlled thermal environment with an ambient tem-
perature of 26±0.5◦C. 1) Temperature Controller (RaspberryPi), 2)
Monsoon, 3) ESP-8266+Thermistor (Temperature Probe), 4) Device,
5) Heating Element.

turn affect the temperature of the devices differently. These
temperature differences meant that different chips throttled
at different points thereby leading to performance variations.
This workload is referred to as UNCONSTRAINED. Figure 4
depicts the temperature of the device as observed during an
UNCONSTRAINED workload. Note how the CPU begins to
throttle very quickly during the warmup and workload phases.

Next, we constrained all CPU cores to run at a fixed, low
frequency that was guaranteed to not thermally throttle. The
goal of this experiment was to ensure that all chips performed
the same amount of work which would then allow us to
evaluate energy differences arising due to underlying transistor
variations. We refer to this workload as FIXED-FREQUENCY,
and Figure 5 describes this technique. Note that we are still
running the workload for a fixed time duration instead of
performing a fixed amount of work. While both approaches are
equally susceptible to external influences such as background
tasks, running the workload for a fixed duration gave us the
additional advantage of being able to evaluate the reliability
of our experimental setup in producing repeatable results, as
we’d expect to see negligible performance variations.
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Fig. 4: Various stages of ACCUBENCH during an UNCON-
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Fig. 5: Thermal characteristics during FIXED-FREQUENCY work-
load on Nexus 5. Due to a low frequency, the device never heats up
to throttling levels.

Each workload was run a minimum of 5 times on each chip
and we present the means with errors in all our results.

All experiments were run with a target ambient temperature
of 26◦C. The controller was configured to ensure that the
temperature inside the THERMABOX always stayed within
±0.5◦C of this target temperature. This setup was necessary
to be able to produce reproducible results, particularly given
how sensitive CPU performance can be to temperature.

Our first requirement as part of evaluating our ACCUBENCH
technique was that the results be reproducible across multiple
iterations. The entire process was automated by our bench-
marking app which was able to communicate and configure
the temperature controller and Monsoon power monitor. Upon
firing a particular intent on the device, the app first commu-

nicates with the THERMABOX and confirms that it is within
the target temperature range. Once stable, the app performs
5 iterations of our ACCUBENCH workload back-to-back. This
process was repeated for each device.

IV. EXPERIMENTAL RESULTS

This section is divided into three parts. First, we individually
examine each SoC that was part of our study. Next, we discuss
the source of performance variation in detail, and provide
examples that illustrate the source of variation on multiple
devices. Finally, we conclude with a summary and discussion
of insights that we were able to glean from our study.

A. Individual SoCs
In each subsection, we describe the number of chips that

were used as part of our study, any available CPU binning
information that we could unearth, and the performance and
energy consumption of the chips relative to one another.
Throughout this section, we represent our results in a nor-
malized form. This helps in depicting variations that occur
between different chips. Errors are represented in the form of
Relative Standard Deviation (RSD), or the absolute value of
the coefficient of variation.

1) SD-800 & SD-805: The Snapdragon-800 SoC was re-
leased in January, 2013 on a 28nm process and has a quad-core
Krait CPU designed by Qualcomm. The Snapdragon-805 was
released later that year and featured a small increase in CPU
frequency. We used the Nexus 5 smartphone to study the SD-
800 and the Nexus 6 to study the SD-805. We used 4 Nexus 5
devices and 3 Nexus 6 devices in our study.

Both SoCs exposed their binning information and corre-
sponding voltage-frequency tables at runtime. The tables for
the Nexus 5 can be found in Table I. We were unable to find
a similar voltage table that corresponded to CPU bins on the
Nexus 6. We managed to obtain 5 out of the 7 possible bins
for the SD-800. However, the bin-4 chip failed during our
experiments and thus we are unable to provide results for this
chip. We evaluate and discuss the result of the remaining 4
chips here. Results from the Nexus 6 are not presented here as
they exhibited negligible performance (2%) and energy (2%)
variations across all 3 devices.

The SD-800 exhibits significant process variation which
is described in Figures 6a, 6b. In our UNCONSTRAINED
workload which is described in Figure 6a, bin-0 exhibits
the highest performance while being 14% faster than bin-
3, which exhibits the worst performance. The energy results
from our FIXED-FREQUENCY workload are no different and
are presented in Figure 6b. Again, bin-0 outperforms the other
bins; it consumes 19% less energy than bin-3 to do the same
amount of work. The performance variation for workload was
within 1.3%.

Counterintuitively, despite having the highest operating volt-
age, bin-0 performs the best in terms of both performance
and energy. This higher voltage has oftentimes been wrongly
considered as a sign of being the worst bin [9]. The chips
with the lower voltage were configured as such to reduce their
inherently high leakage power.
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Fig. 6: Process variations in SD-800 (Nexus 5). Process variations have significant impact with observed performance and energy variations
of 14% and 19% respectively.
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Fig. 7: Process variations in SD-810 (Nexus 6P). Performance and energy variations are in the order of 10% and 12% respectively.

2) SD-810: The Snapdragon-810 SoC was released in
2015 on a 20nm process, was built with ARM’s big.LITTLE
architecture and consisted of 8 CPU cores—4 big Cortex-A57
cores and 4 low-powered Cortex-A53 cores. The Nexus 6P
used the SD-810 SoC and was launched in September 2015.
We used 3 Nexus 6P devices as part of our study. All our
devices reported being on ‘speed-bin 0’, and we were unable
to determine the total number of bins present on this chipset.

These devices along with other big.LITTLE cores imple-
ment a hardware block named Rapid-Bridge Core Power
Reduction (RBCPR) [16] [17] that provides a feedback loop
to optimize the voltage settings for each core. These runtime
voltage settings are determined based on the binning process
and current temperature of the chip. Thus, it is likely that there
is no static voltage-frequency table to extract from the kernel
sources. Figures 7a and 7b report the results of our Nexus 6P
study. Device-363 exhibited 10% lower performance while
consuming 12% additional energy when compared to device-
793. Performance variations during the FIXED-FREQUENCY
workload was computed to be RSD 2.63%.

3) SD-820 & SD-821: We discuss the SD-820 and SD-821
chips side-by-side as they share similar characteristics.

The Snapdragon-820 had its first phones released in early
2016 while the Snapdragon-821 debuted in late 2016. Both
feature a process upgrade to 14nm FinFET and consist of
a quad-core Kryo CPU—a reduction in core count from the
SD-810’s octa-core CPU possibly due to the significant levels
of thermal throttling on the Nexus 6P [18]. We used the

LG G5 which was released in April, 2016 to study the behavior
of the Snapdragon-820 and the Google Pixel to study the
Snapdragon-821. Unlike it’s predecessors, both chips exposed
neither binning information nor voltage tables.

The LG G5 was different in that it also exhibited the
unique characteristic of throttling based on battery voltage.
As described in Section III, we configured the Monsoon to
provide the nominal voltage that was listed on each device’s
battery. In the case of the LG G5, this was 3.85V. However,
when comparing results obtained from the Monsoon and the
battery, we found that all the results from the Monsoon
performed significantly worse than those from the battery.
Further investigation revealed that the OS was throttling the
device based on input voltage. By configuring the Monsoon to
provide the maximum voltage of 4.4V as listed on the battery,
we were able to obtain performance on par with the battery.
These results are shown in Figure 10.

Figures 8a, 8b describe the performance and energy varia-
tions of the SD-820. While Figures 9a, 9b describe the SD-
821. Both chips exhibit similar characteristics by exhibiting
performance variations of ≈5% and energy variations of the
order of ≈ 10%. Although the performance variations that we
observed were minimal, we are confident that these are real
variations with our errors being 1.2% for the LG G5 and 0.7%
for the Google Pixel.
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Fig. 8: Process variations in SD-820 (LG G5). Exhibits low performance variations of 4% but energy variations of 10%.
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Fig. 9: Energy variations in SD-821 (Google Pixel). Very similar behavior to the SD-820. Performance and energy variations in the order
of 5% and 9% respectively.

3.85V 4.4V
Input Voltage V

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Performance Energy Energy/Iteration

Fig. 10: LG G5 anomalous behavior. The LG G5 behaves throttled
when the input voltage is set to the nominal battery voltage of 3.85V.

B. Source of Performance Variation

In Section II we introduced how underlying transistor vari-
ations cause performance variations to occur. Here, we depict
the phenomenon in action and provide a detailed explanation
of the same. Figure 11 shows the distribution of the observed
temperatures and frequencies of two iterations performed on
two different Google Pixel smartphones. In these iterations,
device-488 exhibited 7% higher performance than device-653

and that device-488 also had a 2% and 7% higher frequency
on average for CPUs 0 and 2 respectively.

For the Pixel, the temperature data is perhaps counterin-
tuitive. Figure 11 shows device-488 spending more time at
higher temperatures than device-653 which should imply that
device-488 gets throttled more, but this is not the case. On
investigating the results, we found that due to the transis-
tor characteristics and the thermal throttling policy of the
Google Pixel, device-653 gets throttled harder as its temper-
ature did not drop as drastically as device-488 upon initially
being throttled. So, time spent at temperature is not sufficient
to capture the complexities of thermal throttling mechanisms.

We saw similar behavior in terms of frequency and tem-
perature distributions for the Nexus 5. When comparing an
iteration from a bin-1 Nexus 5 and a bin-3 Nexus 5, we saw
bin-1 outperform bin-3 by 11%. Figure 12 shows that for these
experiments, the bin-1 device ran at higher frequencies, with
the mean frequency also 11% higher.

These results confirm our claim that the differences ob-
served in our results are due to thermal throttling and not
due to external activity such as background tasks. For devices
of the same model, experiments yield consistently lower
performance which is caused by the device running at lower
frequencies due to different thermal throttling behavior. This
behavior is caused by differences in the SoC.
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Fig. 11: Frequency and temperature distributions over time for Pixel experiments. Mean frequency varies by 7% and matches the
observed performance variations.
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Fig. 12: Frequency and temperature distributions over time for Nexus 5 experiments. Mean frequency varies by 11% and matches the
observed performance variations.

Chipset Model # Devices Variation (%)
Performance Energy

SD-800 Nexus 5 4 14% 19%
SD-805 Nexus 6 3 2% 2%
SD-810 Nexus 6P 3 10% 12%
SD-820 LG G5 5 4% 10%
SD-821 Google Pixel 3 5% 9%

TABLE II: Summary of energy-performance variations.
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Fig. 13: Relative efficiency of various smartphone SoCs. While
the SD-805 is definitely more performant than the SD-800, it comes
at the cost of decreased efficiency.

C. Summary & Discussion

In this section, we summarize our results in brief and offer
some discussion on our results, their implications and impact.

• Variations continue to exist on newer chips and affect

smartpone performance. Process variations were known to
exist and affect smartphone performance on older chipsets,
such as the SD800 [7]. Our results show that they continue
to exist in the newer chips and at times with differences
in the range of 10% energy variations. Table II summarizes
these performance and energy variations.

• Quantifying efficiency improvements across SoC gener-
ations. Another interesting dimension that we were able to
explore was efficiency. While manufacturers announce new
SoCs by touting their performance and energy improvements
over the previous generation, we were unable to find any
sources depicting efficiencies. These results are described in
Figure 13. Although efficiency has improved as a whole with
improving manufacturing process and reducing transistor
sizes, in our experiments, the SD-805 was, on average, found
to be less efficient than its predecessor SD-800.

• Complications of Non-Thermal Throttling. The strange
behavior of the LG G5 wherein the CPU was being throttled
by ≈ 20% based on input voltage is reminiscent of recent
reports of old iPhones being throttled [19]. The voltage that
a battery is able to supply decreases over time and throt-
tling based on the input voltage deteriorates user-perceived
performance and complicates benchmarking as researchers
have to now account for more than just the battery capacity.

• Smartphone Binning & Ranking. Battery life is a uni-
versal concern among smartphone users. Given a choice,
consumers will undoubtedly gravitate towards a smartphone
that lasts longer. However, currently, this information is not
made available to them. Smartphone reviewers must make
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it a point to review more than just one device and include
energy-performance variations as part of their reviews.

V. RELATED WORK

Characterizing smartphone behavior in terms of tempera-
ture, energy, and performance has been attempted by numerous
academic and industry researchers. However, to the best of our
knowledge, we are the first to attempt to use these character-
istics to determine the quality of the underlying silicon.

Sekar describes the challenges faced in thermal aware power
management of mobile devices [20]. The paper discusses how
power management policies are typically temperature agnostic,
despite temperature having a significant impact on leakage and
dynamic power. Other works such as [21] and [22] characterize
the impact of power dissipation on different aspects of user
experience such as skin temperature and performance. Halpern
et al. takes this one step further and also attempts to quantify
user satisfaction [23]. They don’t, however, consider the effects
of ambient temperature and don’t quantify process variations.

Multiple efforts have also modeled thermal behavior of
smartphones. Lee et al. developed three dimensional finite
element thermal models using the size and power dissipation
data of commercial hand-held devices [24]. Therminator is a
full device thermal analyzer for smartphones that is capable
of generating accurate temperature maps for chip containing
multiple hardware components and the skin of the device [25].
There have also been several efforts to model and measure
energy consumption of CPUs on mobile devices. For example,
Nachiappan et al. present a multi-component energy man-
agement of mobile devices for frame-based applications [26].
They use simulation models that use multiple activity counters
to estimate energy consumption of cores. Lee et al. present
an energy management approach for mobile interactive web
workloads to maintain cloud-guided QoS [27]. They measure
energy consumption of Cortex-A7 and Cortex-A15 cores using
onboard energy sensors on an ODROID-XU3 board. We
record the power consumption of mobile devices under test by
measuring the current drawn by these devices using Monsoon,
an external power monitor.

VI. FUTURE WORK

CPU binning information is something that has been kept
secret for the most part by manufacturers and despite their best
efforts at attempting to level the playing field between chips
belonging to different bins, the underlying transistor variations
and its effects are inescapable. We strongly believe that device
binning information including the number of bins and what
they mean would greatly help smartphone consumers.

The best way to obtain this information in the absence of
manufacturer’s assistance, would be to introduce a benchmark-
ing app on Google Play with the express intent of gathering
the necessary data for binning CPUs. We plan to build such an
app and evaluate its efficacy in the future. The only parameters
that we cannot control for in the wild are ambient temperature
and software stack. However, preliminary results on using the
cooldown phase as an estimate of ambient temperature are

encouraging. This, in addition to strict filters, should enable
us to compare different devices from across the world.

Our goal would be to gather sufficient data from devices
of various smartphone models via crowdsourcing and then
using this data to rank other devices, thereby helping users and
researchers determine the characteristics of their smartphone
and how it compares to other smartphones of the same model.
Not only can the devices be ranked on the absolute scale with
respect to one another, but the gathered information can also
be used to understand how the manufacturers are binning their
CPUs and the distribution of various bins. In cases where there
is no clear bin labels as observed on the Nexus 5 and Nexus 6,
we plan to create our own bins by clustering the performance
data using unstructured learning algorithms.

VII. CONCLUSION

In this work, we described a problem that currently plagues
smartphone consumers and researchers: differences in smart-
phone CPUs affect both energy and performance. We intro-
duced our technique and careful methodology of identifying
underlying transistor quality which we then used to quantify
energy and performance variations in 5 different SoC genera-
tions. Our contributions are summarized below:
• Introduce methodology for reliable energy-performance

measurements. We strongly believe that our experimental
setup is a contribution unto itself with an average error
of 1.1% RSD over roughly 300 iterations of our work-
loads. Researchers seeking to accurately measure energy or
performance characteristics are encouraged to replicate our
experimental setup.

• Quantify process variation on smartphones. By no means
is process variation new. It has been studied extensively in
the past over the last few decades. However, to the best of
our knowledge, process variation on smartphones has never
been quantified. We showed that process variation continues
to exist across SoC generations and even recent SoCs exhibit
energy and performance variations in the order of 5% and
10% respectively.

• Provide lower-bound on energy and performance varia-
tions. It only takes two devices to observe variations. While
our study of SoCs is limited, at times with only 3 devices to
represent an SoC generation, the process variations shown
in Table II can be considered as a minimum lower-bound to
the overall variation for each SoC. In other words, a larger
study may unearth that the full extent of energy variations
on the SD-820 to be greater than 9%, however, our work
establishes that the full extent is at least 9%.
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