
Measuring and Improving Smartphone QoE Using the Screen as a Sensor
Scott Haseley and Geoffrey Challen

University at Buffalo - Department of Computer Science and Engineering

Improving Smartphone QoE

The Visual Language of Waiting

The Screen as a Narrow Waist Efficiently Measuring QoE

QoEye Architecture

Responding to QoE Metrics

Smartphone users face a variety of issues while using their devices that affect their
quality of experience (QoE). Slow or unresponsive apps, janky scrolling, long latencies,
and poorly designed layouts all contribute to poor QoE.

By its very nature QoE is largely subjective, but there are many aspects of QoE that can
be objectively measured. To the degree possible, the OS should try to improve user
experience by measuring aspects of QoE, and react in ways to improve them.

The screen forms a natural narrow waist at which to capture many QoE-related issues.
Poor responsiveness, janky scrolling, laggy typing, and long latencies are all perceived by
users through interactions with their screens.

A common source of poor QoE comes from long latencies
in response to user interactions, such as clicking a button or
refreshing app content. The OS should respond by doing
anything it can to prioritize that process. However, how
does the OS even know the user is waiting?

When apps and websites make users wait indefinitely, they provide visual feedback -
such as small spinning circles - that users interpret as an indication to wait.

Because there is no shortage of ways that app developers can create these waiting
indicators, it is a challenging problem to know when they are displayed across a large,
diverse set of apps and websites.

When users see these indicators, they expect to wait. But as the length of the wait
increases, so does the likelihood of poor QoE.

On the web, there are a variety
of ways that developers can
show spinners.

From left to right:
1) CSS with webkit animation,
2) using a 3rd party JavaScript
library, and
3) simply displaying a GIF

There are yet other methods,
such as using an HTML canvas
element to directly draw
graphics.

On Android, there are also many
ways to show waiting indicators.

From left to right:
1) a ProgressDialog component
2) Google's material design
SwipeRefreshLayout, and
3) an indeterminate ProgressBar

On Android, there are other
methods as well, such as drawing
using the Canvas API, or
drawing directly using OpenGL.

Independent of implementation, the screen input and output captures a common
language of interactions with smartphones.

Our proposed system, QoEye, is a system that measures QoE at the pixel level, and
exposes that information to the OS to help improve QoE.

The system takes two input streams: the stream of graphics framebuffers generated
when the screen is drawn, and the stream of touch input events generated as a user
interacts with the device.

Property extraction modules consume the screen I/O streams and compute high-level
metrics and properties. Examples include frame rate and frame diff percent.

The high-level properties are fed into various QoE metric modules that compute
objective measures of QoE aspects, such as active waiting and responsiveness.

The QoE metrics are used as input by an OS QoE module that can use that information
to make decisions aimed at improving QoE.

Efficiency is paramount for QoEye since a typical screen refresh rate is 60 Hz. At
modern smartphone resolutions, each frame can easily eclipse 14 MB of data.
While computing metrics such as frame rate are naturally efficient for QoEye,
computing frame diffs, as needed by several modules, requires optimization.

The first two images are consecutive frames of a spinner shown by the Spotify app on
Android. The third image is the pixelwise diff image, with a pixel shown as white if there
is a difference, black otherwise.

A plot showing frame diffs over time. The
long valley corresponds to when a spinner
was on screen.

Spinner displayed

On Android, our frame diff algorithm takes advantage of the data already being GPU-
resident, and the massive parallelization available on GPUs. To compute diffs between
two frames, we first scale down the images to a reasonable size, and perform the diff
using a custom OpenGL shader.

To compute the % diff, we use a
classic GPGPU reduction algorithm
implemented using OpenGL
shaders. The algorithm ping-pongs
between two textures, averaging
neighboring pixels in groups of 4,
and writing the result to the alternate
texture in a single texel per group.
Computation is done on the GPU,
and we read back a single value.

Once the system computes QoE metrics, this information must be used in a meaningful
way. When possible, the OS should use this data to inform its own decisions. However,
we also envision this information being used in a broader system that enables QoE to
be improved across the network.

The OS can use QoE metrics to inform resource scheduling decisions.
Threads, disk access, and network should be prioritized based on their
impact on QoE.

Access points can also benefit from QoE metrics provided by QoEye.
Traffic prioritization and bandwidth partitioning decisions can be
made with user QoE in mind. For example, data that is destined for a
user that is actively waiting should be prioritized over background
traffic.

Similar to access points, cloud servers can benefit from knowledge of
how their decisions might affect QoE. Internally, tasks can be
prioritized in such a way that users actively waiting or interacting with
their devices are prioritized.




