Measuring and Improving Smartphone QoE Using the Screen as a Sensor
Scott Haseley and Geoffrey Challen

University at Buffalo - Department of Computer Science and Engineering

Improving Smartphone QoE

The Screen as a Narrow Waist

Efficiently Measuring QoE

Smartphone users face a variety of issues while using their devices that affect their
quality ot experience (QoE). Slow or unresponsive apps, janky scrolling, long latencies,
and poorly designed layouts all contribute to poor QoE.

By its very nature QokE is largely subjective, but there are many aspects of QoE that can
be objectively measured. To the degree possible, the OS should try to improve user
experience by measuring aspects of QoLE, and react in ways to improve them.

A common source Qf poor QoE comes fr.on.l long latencies 4 y & o
in response to user interactions, such as clicking a button or
refreshing app content. The OS should respond by doing) Loading..

anything 1t can to prioritize that process. However, how
does the OS even know the user is waiting?

The Visual Language of Waiting

When apps and websites make users wait indefinitely, they provide visual feedback -
such as small spinning circles - that users interpret as an indication to wait.

When users see these indicators, they expect to wait. But as the length of the wait
increases, so does the likelihood of poor QoFE.

Because there is no shortage of ways that app developers can create these waiting
indicators, 1t is a challenging problem to know when they are displayed across a large,
diverse set of apps and websites.

On the web, there are a variety
192.168.1.155: iner.htr 0 192.168.1.155: 0 192.168.1.155: er.h 0

of ways that developers can
show spinners.

Spinner Examples

Spinner Examples Spinner Examples

CSS Animated

The screen forms a natural narrow waist at which to capture many QoE-related 1ssues.
Poor responsiveness, janky scrolling, laggoy typing, and long latencies are all perceived by
users through interactions with their screens.

Vacation Slideshow

Interact with the buttons below to view my latest adventure!

192.168.1.155:8000/slideshow.html [0 [

START STOP PREVIOUS NEXT @ Google Play Newsstand
3 Google Play Store
H : A Google Play services
Vacation Slideshow @ GooglePlay
Click the buttons below to view the slideshow . ;
from my latest adventure! n Google Spotlight Stories
Previous Next Google+
1T 2 3 4 5 6 7 . 8 9 (1]
Loading qgqwer r tyuiop

e # $ % & - & ()
a s d f g h j k I

< ’ Please Wait...

4 z x cvbnma@a

7123/ . ‘E’

Independent ot implementation, the screen input and output captures a common
language ot interactions with smartphones.

Spinner

Using only CSS with webkit animation, we can
create many different spinners.

<div class="loader">Loading...</div>

.loader {
margin: 60px auto;
font-size: 10px;
position: relative;
text-indent: -9999em;
border-top: 0.9em solid rgba(0, 0, 0, 0.2);
border-right: 0.9em solid rgba(0, 0, 0, 0.2);
border-bottom: 0.9em solid rgba(0, 0, 0, 0.2);
border-left: 0.9em solid #ffffff;
-webkit-transform: translateZ(0);
-ms-transform: translateZ(0);
transform: translatezZ(0);
animation: load8 1.1s infinite linear;

Loading

‘ \ Please Wait...

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity_main);

new ProgressDialog(this);

mDialog =
mDialog.setTitle("Loading");
mDialog.setMessage("Please Wait...");
}

JS Animated Spinner

Using only one of many javascript libraries, we can
easily create spinners.

M
n"

<script src="spin.js"></script>

<script>
function startSpinning(el) {
var target = document.getElementById(el);
var spinner = new Spinner().spin(target);
return spinner;
}
</script>

<script>
$(document).ready(function() {
$(window).on("load", function() {
startSpinning('throbber");
).
)

</script>

= 4 O 845

Material Pull-Refresh

400mg chicken 0

6 cups coconut milk

1 thumb chunk of galangal

3 stalks lemongrass

1 large white onion

2 tomatoes

6 makrut lime leaves

200 grams oyster mushrooms
10 Thai chilies

salt

lime juice

eight="wrap_content">

Animated Graphic
Spinner

Even simpler, we can just use an animated image
to spin for us.

<p class="lead">Even simpler, we can
<div>

</div>

= 4 D 935

Sorry, you'll have to wait

C I'm going to make you wait, but | have no idea how
long...

Compressing contents... Done.
Verifying contents... Done.

Preparing to upload...

protecte d void onResume 0 {
ProgressBar pb = (ProgressBar) findViewById(R.id.pbLoading);
pb.setVisibility(ProgressBar.VISIBLE);
super.onResume();

¥

From left to right:

1) CSS with webkit animation,
2) using a 3rd party JavaScript
library, and

3) simply displaying a GIF

There are yet other methods,
such as using an HTML canvas
clement to directly draw

graphics.

On Android, there are also many
ways to show waiting indicators.

From left to right:

1) a ProgressDialog component
2) Google's material design
SwipeRefreshlLayout, and

3) an indeterminate ProgressBar

On Android, there are other
methods as well, such as drawing
using the Canvas API, or
drawing directly using OpenGL..

QoEye Architecture

Our proposed system, QoEye, is a system that measures QoE at the pixel level, and
exposes that information to the OS to help improve QoFE.

Framebuffer Stream
Property Extraction
| Modules
|
|
Input Stream
QoE Metric Modules

OS QoE Module

The system takes two input streams: the stream of graphics framebutfers generated
when the screen is drawn, and the stream of touch input events generated as a user
interacts with the device.

Property extraction modules consume the screen 1/O streams and compute high-level
metrics and properties. Examples include frame rate and frame diff percent.

The high-level properties are fed into various QoE metric modules that compute
objective measures of QoL aspects, such as active waiting and responsiveness.

The QoE metrics are used as input by an OS QoE module that can use that information
to make decisions aimed at improving QoE.

Eftticiency is paramount for QoEye since a typical screen refresh rate 1s 60 Hz. At
modern smartphone resolutions, each frame can easily eclipse 14 of data.

While computing metrics such as frame rate are naturally etficient for QoEye,
computing frame diffs, as needed by several modules, requires optimization.

Spinner displayed

0 I L\h./J

0 50 100 150 200

Frame Sequence

A plot showing frame diffs over time. The
long valley corresponds to when a spinner
was on screen.

The first two images are consecutive frames of a spinner shown by the Spotify app on
Android. The third image is the pixelwise diff image, with a pixel shown as white 1if there
is a difference, black otherwise.

On Android, our frame diff algorithm takes advantage of the data already being GPU-
resident, and the massive parallelization available on GPUs. To compute diffs between
two frames, we first scale down the images to a reasonable size, and perform the diff
using a custom OpenGL shader.

To compute the % ditf, we use a
classic GPGPU reduction algorithm
implemented using OpenGL
shaders. The algorithm ping-pongs
between two textures, averaging
neighboring pixels in groups of 4,
and writing the result to the alternate
texture in a single texel per group.
Computation 1s done on the GPU,
and we read back a single value.

Responding to QoE Metrics

Once the system computes QoE metrics, this information must be used in a meaningful
way. When possible, the OS should use this data to inform its own decisions. However,
we also envision this information being used in a broader system that enables QoE to
be improved across the network.

The OS can use QoE metrics to inform resource scheduling decisions.
Threads, disk access, and network should be prioritized based on their
impact on QoE.

Access points can also benefit from QoE metrics provided by QoEye.
Trattic prioritization and bandwidth partitioning decisions can be
made with user QoE in mind. For example, data that is destined for a
user that 1s actively waiting should be prioritized over background
traffic.

Similar to access points, cloud servers can benetit from knowledge ot
how their decisions might atfect QoE. Internally, tasks can be
prioritized in such a way that users actively waiting or interacting with
their devices are prioritized.

University at Buffalo

https://www.bluegroup.systems/projects/qoe
shaseley@buffalo.edu

challen@buffalo.edu

° - @

