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ABSTRACT

Smartphone consumers, app developers, and even mobile
systems researchers operate under the assumption that per-
formance differences between identical smartphones should
be small. Consumers pick a model to purchase and don’t
consider that the specific device they leave the store with
may vary quite dramatically from the identical models it sat
next to on the shelf. App rating systems typically collect the
model from reviewers, but not more detailed information—
again, assuming that all instances of a particular model per-
form similarly. Even mobile systems researchers will conduct
studies using small numbers of devices that fail to account
or control for inherent differences between identical phones.

Unfortunately seemingly-identical smartphones can in fact
have very different performance characteristics. Note that
we are not referring to differences in battery or Flash per-
formance caused over time by wear. Inherent differences
would separate two brand-new phones still in the original
packaging. Our experiments show up to 20% performance
and energy consumption differences between otherwise iden-
tical devices. These differences result from process variation
in the manufacture of smartphone CPUs, which causes some
CPUs to perform much more poorly than others. This paper
explains the causes of this variation, measures its impacts,
and discusses implications for smartphone researchers, soft-
ware developers, and consumers.

1. INTRODUCTION

Two brand-new smartphones sit side-by-side. While they
appear identical, one will consume 20% more energy than
the other. It will get hotter, and run slower. A consumer
that selects it may complain about poor battery lifetime
and overheating. Or they may direct their negative reviews
against apps that run on their device. A researcher experi-
menting with these devices may incorrectly conclude that a
new approach saves (or does not) energy, or performs better
(or worse). While the problematic device will happily iden-
tify itself, nobody is listening when it describes the problems
it will inevitably face.
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The seeds of this inherent variation were sown long ago in
a factory far away. With increasing complexity and smaller
process sizes, silicon variations are unavoidable. This makes
it impossible to produce two identical smartphone CPUs.
While process variation is well-known and the reasons for
it are well-understood, we see little evidence that its effects
are considered by smartphone consumers, app developers,
and even mobile systems researchers. And, unlike desktop
and server processors, where differences between good and
bad chips are priced accordingly, in the mobile market man-
ufacturers attempt to paper over these differences. Despite
their effects on energy consumption and performance, good
and bad CPUs are sold side-by-side in identically-priced de-
vices. Despite the importance of battery lifetime, consumers
purchase devices without testing them. And despite the dif-
ferences between good and bad devices, app developers read
reviews without this context and mobile systems researchers
run experiments without controlling for this variation.

Note that we are not describing variations that occur over
time due to usage. Degradations in battery and Flash qual-
ity as a result of long-term use are well-understood. Well-
designed experiments will control for smartphone wear, and
consumers have no choice but to replace aging components
or their entire device. What makes inherent variation so sur-
prising and important is that it is present and inescapable
from the moment that the device is unboxed.

Our goal in this paper is to explain these inherent differ-
ences, measure their impact, and discuss implications for the
various communities that work with smartphones, includ-
ing consumers, app developers, and researchers. We begin
by describing the underlying reasons for these variations in
Section 2. We find it interesting that the same variations
that produce price differences in non-mobile CPUs do not
produce price differences in mobile CPUS. Instead, the dif-
ferences in “cost” are passed on to the consumer in the form
of differences in energy consumption and heat generation.

In Section 3, we describe our experimental setup and in
Section 4 we perform a series of experiments to quantify the
effect of CPU process variation. We observe significant dif-
ferences in heat generation and energy efficiency, which we
expected. However, due to the restricted thermal environ-
ment smartphones operate in, differences in heat generation
quickly lead to performance differences. As a result, con-
sumers (or researchers) stuck with poor-quality smartphone
CPUs will experience both degraded energy consumption
and performance. We discuss the impact of these differ-
ences in Section 5. Finally, we wrap up by discussing some
of our future work in Section 6 and conclude in Section 7.
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2. BACKGROUND

Our curiosity about variations between smartphones arose
from our inability to reproduce performance results for a
CPU intensive benchmark. By swapping the SoC while
keeping the workload, device casing and battery constant,
we confirmed that the SoC was the source of variation. Fur-
ther experimentation revealed that the variations were caused
due to SoCs belonging to different CPU bins. We explain
the binning process and the reason for it below.

2.1 Process Variation

As transistor sizes have shrunk, process variation has made
it virtually impossible to produce two chips that are ex-
actly the same in all aspects, let alone millions of chips
that are in our smartphones today. The manufacturing pro-
cess of chips involves multiple steps such as wafer produc-
tion, lithography-based masking, doping, diffusion and ion
implantation—to alter electrical characteristics of silicon—
followed by metallization to create contacts with silicon.
This complex process naturally results in variations, called
process variation, in transistor attributes such as length,
width and bias. Differences in bias result in different thresh-
old voltages for the transistors which in turn results in vari-
able leakage current and switching speed. Thus, a single
wafer design ends up producing transistors of varying speeds
and leakage power—only some of which satisfy the design
constraints while others are either too slow or too leaky
thereby consuming high power [9].

As only a fraction of these chipsets will satisfy the design
constraints such as expected timing or power, process vari-
ation tends to result in lower yield rates. To make matters
worse, as the transistor sizes shrink, process variation be-
comes more pronounced, resulting in decreased yields. To
improve yield rates and minimize the cost of a single chip,
manufacturers find ways to sell even the “defective” pieces.
Traditionally, manufacturers have dealt with defects by in-
troducing some redundancy or, in some cases of failure, dis-
abling certain features. For example, if the bad transistors
are all co-located and appear in the processor block, that
specific core is disabled and the chip is sold at a lower price.
Similarly, if certain cache lines are faulty, then either the
lines are rewired to use redundant cache lines—that were put
in place for this very situation—or the entire cache block is
disabled and the chip is sold with a lower cache size. These
process variations are applicable to all components on smart-
phones. However, in this paper, we focus on studying the
impacts of these variations on CPUs.

2.2 CPU Binning

In some cases, despite having no defects, differences in
the semiconductor doping process can result in a chip re-
quiring higher or lower voltages to operate. The process of
segregating CPUs based on its manufacturing quality and
electrical characteristics is known as CPU binning. Note
that because multiple cores that are part of a single modern
CPU are drawn from the same patch of silicon, differences
are between entire CPUs and not between cores.

The two major techniques employed by manufacturers to
improve yield rates are speed binning and voltage binning.
When chips are manufactured, they are first tested to iden-
tify their stable operating frequencies. If a chip does not
meet the necessary timing constraints or fails to operate at
the expected frequency, the operating frequency is lowered

Voltage Frequency (MHz)
(mV) 300 729 960 1574 2265

Bin-0 800 835 865 965 1100
Bin-1 800 820 850 945 1075
Bin-2 775 805 835 925 1050
Bin-3 775 790 820 910 1025
Bin-4 775 780 810 895 1000
Bin-5 750 770 800 880 975
Bin-6 750 760 790 870 950

Table 1: Voltage (mV) vs. Frequency (MHz) Across Bins.
Voltage set for various frequency levels across bins for Nexus 5.

until it passes the tests. The chips are then sorted into bins
and labeled according to their speed. This process is called
speed binning. They are then sold at price points propor-
tional to their speed bin [13].

Depending on the stable frequency, the CPU is categorized
into one of the manufacturer’s bins (e.g. i3, i5, i7) and
priced accordingly. So, in reality, certain Intel i5 chips are
in fact lower binned i7 chips with certain features, like hyper-
threading, disabled. Using this approach, manufacturers are
able to utilize a higher ratio of the silicon wafer—even the
chips with minor defects.

Speed binning labels chips according to their speed. Volt-
age binning keeps the frequency fixed across all chips and
adjusts the voltage across bins. Voltage binning is based on
the fact that both, speed and leakage power of a transistor,
are a function of the supply voltage. Slow transistors—ones
with larger gate lengths—Ileak less, while fast transistors—
ones with shorter gate lengths—leak more. Manufacturers
thus divide the chips into voltage bins where slower chips
are binned at higher voltage so as to support the required
operating frequency, while faster chips are binned at lower
voltage in order to reduce their already high energy con-
sumption. We believe that this is done in order to try and
provide consistent performance (in terms of speed) across all
devices using the same SoC.

Table 1 lists voltages used for multiple frequencies across
bins on a Nexus 5 device. Bin-0 has the slowest transistors
while Bin-6 transistors leak the most. Therefore, Bin-6 op-
erates at lowest voltage while Bin-0 voltage is increased to
enable equal performance as Bin-6. Manufacturers thus, use
this technique to attempt to enable consistent performance
and similar power consumption across all bins. Note that
the process controls for speed, so even both the Bin-0 and
Bin-6 CPUs provide the same set of operating frequencies.

It is important to note that while desktop manufacturers
typically have different price tags associated with each of
their bins, reflecting the difference between good and bad
silicon, mobile SoCs do not. To the best of our knowledge,
mobile SoC manufacturers appear to be assigning CPUs of
all bins with the same label which are then eventually sold
to the consumer at the same price.

3. EXPERIMENTAL METHODOLOGY

Before presenting our results, we first describe our exper-
imental methodology. All experiments were performed on
the LG Nexus 5 handset running Android 5.1 (Lollipop).
The Nexus 5 was released in 2013 and has a 4 core 2.26 GHz
ARM CPU and 2 GB of RAM. The CPU has 14 frequency
steps ranging from 300 to 2265 MHz. Recent surveys of
active Android devices and versions [7, 1] confirm that the
Nexus 5 and Android 5.1 are still widely used, despite the
availability of newer devices and Android versions.
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Figure 1: CDF of Time Spent at Different Frequencies.
300, 960 and 2265 MHz combined account for over 80%.

We used PHONELAB data [12] to determine that Nexus 5
CPUs spends most of their time at only 3 frequencies. Fig-
ure 1 shows the distribution of time spent at various fre-
quencies on 150 devices over 30 days. We determined that
both, 300 MHz and 960 MHz were resting frequencies when
the CPU was idle and therefore focused our study on the
max frequency, 2265 MHz.

By default, the Linux kernel has no power management
logic to power cores on and off in response to load. Instead,
Qualcomm distributes a closed-source binary, mpdecision,
which is responsible for making these decisions based on
CPU load. mpdecision is also responsible for the high usage
of the 960 MHz frequency step. When the screen is on,
mpdecision raises the resting frequency from 300 MHz to
960 MHz. This is done to provide better responsiveness and
reduce jitter under the assumption that the user is likely to
interact with the device while the screen is on.

Our workload was an Android app that computes the dig-
its of w. The app can be configured to specify the number
of threads to run in parallel and whether the goal is to com-
pute a certain number of digits or to run for a specific time
period. We refer to this app as PIBENCH. In our experi-
ments, we configured PIBENCH to always use 4 threads to
ensure that all cores are kept busy.

To measure energy, we used the Monsoon Power Moni-
tor [4]. The Monsoon Power Monitor samples the power
consumption at the rate of 5KHz while supplying stable volt-
age to the phone. Per the Nexus 5’s battery specifications,
we configured the Monsoon to use a 3.8 V supply voltage.

Before starting the actual workload, PIBENCH introduces
a unique power signal that allows the Monsoon’s and the
smartphone’s time-bases to be synchronized. This was nec-
essary given that we were attempting to attribute Monsoon’s
energy measurements to the phone’s logs denoting the be-
ginning and end of experiments. To generate this unique
signal, we turned on the device’s flashlight for 20 s. This
creates a period of high energy consumption over a known
duration which is easily identifiable during post-processing.

Differences in heat generation between CPU bins affect
energy efficiency and performance. To ensure that we con-
trolled for the ambient temperature, all our experiments
were performed in a controlled thermal environment which
we refer to as THERMABOX. Figure 2 shows this setup. The
temperature inside our THERMABOX is controlled by an STC-
1000 temperature controller which has a range of -50°C to
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Figure 2: Controlled thermal environment. All our experi-
ments were run inside a controlled thermal environment with an
ambient temperature of 10+1°C. 1) Temperature Controller, 2)
Monsoon, 3) Device, 4) Temperature Probe.

99°C with a resolution of 0.1°C. The temperature controller
cools the THERMABOX by power cycling the small refriger-
ator as needed. We configured the controller to maintain
the temperature of the THERMABOX at 10+1°C or 50°F.
This temperature was chosen because it represents a rea-
sonable outdoor ambient temperature that a smartphone
might encounter—at least in Buffalo. It also allowed the
smartphone to cool more rapidly between runs so that we
could repeat experiments more quickly. This setup was nec-
essary to be able to produce reproducible results. Further
discussion on this is continued in Section 4.

To control for differences in the device packaging, we used
a single case for all experiments. Only the SoC itself was
removed from its case and swapped into our harness in each
experiment. On the Nexus 5, the SoC can be easily removed
and replaced without requiring any soldering.

All device parts were kept in the THERMABOX between
experiments so that they began runs as close as possible
to the target temperature. Otherwise we noticed cooling
artifacts over the first few experiments with a new device
as the SoC gradually cooled down to the THERMABOX set
temperature.

At the start of each experiment, the device first does a
short warm-up run for 10 seconds at the max frequency to
heat the device up. It then waits until the CPU temperature
sensor reports a stable temperature of 25°C or lower. Note
that the CPU temperature sensor is on the CPU die and
so reports a temperature that is much higher at all times
when the CPU is running than the case or ambient temper-
ature. After the temperature sensor stabilizes, the workload
is started. When the workload completes, logs are uploaded
to a server and combined with data from the Monsoon.

All of our experiments were repeated up to 10 times from
which we consider the last 5 iterations for the data presented
here. This is done to ensure that the phone reaches some
steady state over the time taken to complete the first few
iterations. When applicable, we provide the standard devi-
ation across the last 5 iterations to validate our approach.

4. RESULTS

Our results are broadly classified into three parts. First,
we confirm the inter-bin energy differences that result from
voltage binning. Second, we show that despite manufac-
turer’s best efforts, differences in heat generation between
bins quickly create performance differences as well. Finally,
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Figure 3: Nexus 5 inter-bin energy variation. Bin-4 ends up
burning &~ 9% more energy over the same time period while also
doing the same amount of work. Can Bin-4 be considered similar
to Bin-07
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Figure 4: Nexus 5 inter-bin energy variation under uni-
form voltage. Without voltage binning, phones in Bin-4 con-
sume =~ 40% more energy than Bin-0.

we use more PHONELAB data to show that these effects oc-
cur on real devices and not just in a lab setting.

4.1 Energy Variation

Since manufacturers have focused their efforts on provid-
ing consistent performance, we will first quickly confirm that
the performance of all bins is equivalent. We also evaluate
the amount of energy that different bins sacrifice to achieve
this performance. To do this, we configure PIBENCH to run
for a fixed time period of 30 seconds. This workload suits
our purposes as it allows us to measure relative performance
in terms of progress—the number of digits computed over
the specified time period.

As expected, we observed negligible difference in perfor-
mance across various bins. Over the fixed time period of
30 s, on average, CPUs from bins 0 through 4 all computed
the first 3200 digits of m with a standard deviation of 0.1%,
showing that CPUs of various bins have similar performance
capabilities.

We now look at the energy consumption of the chips while
achieving consistent performance. Figure 3 plots the energy
consumption of various Nexus 5 bins to run the same work-
load for 30 s. From Figure 3, we see that bad bins end up
consuming as much as &~ 9% more energy compared to the
good ones while performing similarly.

In Figure 3, two variables contribute to differences in en-

ergy consumption—operating voltage and transistor varia-
tions. To understand how different the underlying transis-
tors are, we removed voltage variations by running all bins
at the same voltage using over-volting. Figure 4 plots the en-
ergy consumption for various bins of a Nexus 5 smartphone
when configured to run at the same voltage. This figure
shows that transistor differences can account for as much as
~ 40% difference in energy. Thanks to voltage binning, that
energy difference drops down to 9% across bins.

Note that Figure 3 establishes a trend that continues across
the rest of our experiments. Despite testing 5 CPU bins, we
see pronounced differences only between two groups: Bins
0, 1 and Bins 2, 3, 4. We are unsure why this is the case.
When we control for voltage differences in Figure 4, we do
see differences in all 5 bins. But at their standard operating
voltages only two metabins seem to exist. This may be be-
cause manufacturer’s efforts to equalize performance across
all bins can only go so far. Adjusting the supply voltage can
reduce the number of bins from 5 to 2, but not any farther.

4.2 Performance Variation

Our short PIBENCH experiments confirm the inter-bin en-
ergy differences we expected. In the following experiments,
we configured PIBENCH to do fixed work. Specifically, to
perform the first 400,000 iterations of computing the digits
of m which generates the first 114,290 digits.

From Figure 5a, we see that energy varies from bin to bin
while they all perform a fixed amount of work. Quantita-
tively, the difference in total energy consumption between
Bin-0 and Bin-4 is &~ 20%. Recall that in our earlier 30 s
experiment summarized in Figure 3, we observed a different
of 9% between the two bins.

To paint the full picture, we also look at relative perfor-
mance before delving into the reasons for increased energy
drain. Contrary to our earlier findings, Figure 5b shows
that performance also begins to vary over time. Bin-4 con-
sistently took 18% longer time to complete the workload
than Bin-0. Combined, these results show that the duration
of the workload has varying impacts on both performance
and energy across CPU bins.

Given that manufacturers have controlled for speed in the
voltage binning process, the goal is clearly to eliminate per-
formance variation. But performance variation clearly still
exists. Before describing the underlying cause, we first need
to establish a few facts. Leakage current of transistors is pro-
portional to temperature [11]. Transistors that leak more
also generate heat at faster rate compared to those that
have lower leakage current. To make matters worse, in cases
where the cooling rate is not increased, the higher heat dissi-
pation increases the temperature of the device. This in turn
creates a feedback loop wherein the leakage current further
increases. The inter dependencies of temperature and leak-
age current cause the faster, leaky transistors to hit high
temperatures sooner and more often.

Although temperature accounts for changes in energy, it
still does not explain the performance variation. This arises
from the kernel’s thermal management policies. On the
Nexus 5, the kernel begins to throttle the CPU when the
temperature reaches 80°C. The leakage current of Bin-2, 3
and 4 was sufficiently high to cause the chip to hit 80°C
and trigger the kernel’s thermal throttling policies. Note
that while the policies about how to perform thermal man-
agement are up to the kernel, overheating cores must be
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(a) Energy Comparison Across Bins.
Bin-4 consumes ~ 20% more energy than
Bin-0.

(b) Inter-bin performance comparison.
Bin-4 consumes 20% more energy while also
taking 18% longer—lose-lose.

(c) Inter-bin temperature variation.
Bins 2, 3, 4 encounter thermal throttling
which impacts their overall performance.

Figure 5: Energy, Performance and Temperature Variation Across Bins

throttled or shut down to cool. Regardless of how it is done,
it will disproportionately affect the performance of CPUs
that generate more heat.

From Figure 5b, we see that bins 2, 3 and 4 ran the work-
load under the requested 4-CPU configuration for a total of
100 seconds. Combining this with Figure 5c, we see that ap-
proximately the first 100 seconds of the workload was when
all 4 CPUs were active. Beyond this point, kernel throttling
forces one CPU to go offline. From this figure, we also see
that bins 0 and 1 do not raise the temperature high enough
for the thermal throttling to ever trigger—thereby allowing
these CPUs to finish the workload faster.

4.3 Overheating in the Wild

One question that remains to be answered is whether ther-
mal throttling occurs in the wild. To answer this question,
we processed PHONELAB data looking for kernel logs per-
taining to thermal throttling. Each device’s logs was bro-
ken up by day and the number of thermal throttling events
were totaled. Thus, we have one data point for each device-
day. Our findings are summarized in Figure 6. 80% of all
device-days report one or more throttling events. 20% of all
device-days report 50 or more throttling events. So this is
not an artifact of the lab environment.

In fact, our low THERMABOX operating temperature of
10°C was chosen to produce less overheating. Indoor build-
ing set points are higher, as are outdoor temperatures during
warm parts of the year in most parts of the world. Because
smartphone CPUs rely on the ambient thermal environment
for cooling, higher ambient temperatures will cause more
overheating, reduced energy efficiency, and performance loss.
This effect will be felt across all CPUs, but be worse on CPU
bins that naturally generate more heat.

S. IMPACT

In this section, we describe how the manufacturer’s bin-
ning policies affect research and end-users.

5.1 Research

A significant portion of prior research assumes cross-device
similarity within the same device models. To the best of our
knowledge, no prior work has accounted for variations oc-
curring due to CPU bins while modeling system energy con-
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Figure 6: CDF of number of thermal events observed per-
device per-day in PhoneLab.

sumption. All prior work that attempts to generate a model
from a set of devices and apply this model to a larger, more
general set are also affected. Table 2 lists some of the work
that can greatly benefit from accounting for CPU bins, in-
cluding several of our group’s own previous projects.

Given that the CPU is among the largest consumer of
energy on smartphones [10], future systems that model en-
ergy consumption need to take CPU bin information into
account while modeling. In other words, selecting a smart-
phone make and model is no longer sufficient to perform
studies. One must also ensure that either that all the de-
vices belong to the same bin or that the studies account for
bin differences. It is also crucial to run experiments within
controlled thermal environments. As shown earlier, differ-
ent bins have significantly different thermal characteristics
which can very quickly lead to performance variations. This
effect can persist from run to run. Without proper controls
and time to cool, a device that gets hotter will stay hotter,
and that heat will cause subsequent experiments to consume
more energy.

5.2 End-Users

End users are perhaps the worst affected by the manu-
facturer’s practices. Most online reviews of smartphones do
not discuss CPU binning or the bin to which the particu-
lar device they tested belongs. This in turn causes users



Table 2: Research Systems Impacted by CPU Bins

Research Work How is it impacted?

Carat Compares energy measurements obtained on one device with another

Mote is Dead!

All energy measurements from one device

Jouler Uses power model that does not account for bin differences
E3 Savings reported would vary depending on CPU bin
WattsOn Attempts to apply energy measurements from one device to another

o Distribution of CPU Bins

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

CDF

CPU Bin #
Figure 7: Bins of 109 PhoneLab Nexus 5 Devices

to blindly believe that the phone they purchase will end up
performing similar to the device that was reviewed.

Among popular reviews of the Nexus 5 [2] [6] [5] [8], we
found only one [8] that talks about CPU bins. However,
contrary to our results, this review concludes that higher
bins are better and that Bin-1 is the slowest bin. Given our
knowledge that Bin-1 is among the best performing bins, this
raises an important question of whether the reviewer picked
up a Bin-1 device by chance or whether the manufacturer
knowingly sent in a Bin-1 device for the review.

Figure 7 shows the bin distribution of 109 PHONELAB
phones for which we were able to identify CPU bin infor-
mation. Given how bins 2, 3 and 4 account for 80% of the
total phones, the rational approach would be to establish the
characteristics of these bins as the baseline. In this scenario,
a user has a 20% chance of buying a smartphone that has =
20% better energy and performance characteristics—devices
from bins 0, 1. This would also imply that manufacturers
knowingly sold 20% of their CPUs which were superior at
the same cost as the baseline ones.

Although all of our studies were performed on a single
model, Nexus 5, we are aware of CPU binning procedures be-
ing applied on several others including the Nexus 6, Nexus 5X
and Nexus 6P. While the energy and performance variations
observed in this research work may not directly apply to
other devices, we hope that the methodology and techniques
used in this paper will be of use to future researchers looking
to study smartphone energy and performance.

6. FUTURE WORK

Due to manufacturing process variations, there are vari-
ations in static and dynamic power consumptions across
CPUs. Theoretically, this means that even though some
CPUs are more inefficient than others at doing work, they
could be better at idling. We were unable to conclusively
verify this trend during our experiments. But if it indeed
exist, then it results in some very interesting implications
for smartphone users. Users can match the device they buy

to their usage patterns. A heavy smartphone user may want
a device that is more efficient when busy while a light user
may want a device that is more efficient at idling.

We also plan to look into how bins are defined on other
devices with heterogeneous cores. These devices spend a lot
of time running the little cores [3]. Thus, if the little cores
are from a bin that is inefficient, this can negatively impact
the battery life and by extension, the user’s experience.

7. CONCLUSIONS

To conclude, in this paper, we quantify the impact of pro-
cess variations on both performance and energy in today’s
smartphones. We describe some new challenges and dif-
ficulties in conducting studies on smartphone performance
and energy consumption. Importantly, we question the cur-
rent naming practices adopted by mobile SoC manufacturers
wherein chips under the same label exhibit up to 18% per-
formance and 20% energy variations.
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