
Formal Methods in System Design manuscript No.
(will be inserted by the editor)

Wireless Protocol Validation Under Uncertainty

Jinghao Shi1 · Shuvendu K. Lahiri2 ·
Ranveer Chandra2 · Geoffrey Challen1

the date of receipt and acceptance should be inserted later

Abstract Runtime validation of wireless protocol implementations cannot al-
ways employ direct instrumentation of the device under test (DUT). The DUT
may not implement the required instrumentation, or the instrumentation may
alter the DUT’s behavior when enabled. Wireless sniffers can monitor the
DUT’s behavior without instrumentation, but they introduce new validation
challenges. Losses caused by wireless propagation prevent sniffers from per-
fectly reconstructing the actual DUT packet trace. As a result, accurate vali-
dation requires distinguishing between specification deviations that represent
implementation errors and those caused by sniffer uncertainty.

We present a new approach enabling sniffer-based validation of wire-
less protocol implementations. Beginning with the original protocol monitor
state machine, we automatically and completely encode sniffer uncertainty
by selectively adding non-deterministic transitions. We characterize the NP-
completeness of the resulting decision problem and provide an exhaustive algo-
rithm for searching over all mutated traces. We also present practical protocol-
oblivious heuristics for searching over the most likely mutated traces. We have

This work was published, in part, in Runtime Verification (RV) 2016 [32].

Jinghao Shi
jinghaos@buffalo.edu

Shuvendu K. Lahiri
shuvendu@microsoft.com

Ranveer Chandra
ranveer@microsoft.com

Geoffrey Challen
challen@buffalo.edu

1University at Buffalo, Buffalo, NY 14260, USA
2Microsoft Research, Redmond, WA 98052, USA

2 J. Shi, S. K. Lahiri, R. Chandra, G. Challen

implemented our framework and show that it can accurately identify imple-
mentation errors in the face of uncertainty.

Keywords Runtime Verification · Wireless Protocol · Sniffer · Uncertainty

1 Introduction

Custom wireless protocols are often designed and deployed to meet the specific
performance and power needs of special-purpose wireless devices. Examples
include Google Iris contact lenses [17], Xbox One wireless controllers [36],
and Google Chromecast [35]. Validating that device implementations work
correctly is critical to achieve the design goals of the wireless protocol and
also prevent bugs in shipped products [9,15,11].

Runtime validation of the protocol implementations on such devices is chal-
lenging because collecting traces from the device under test (DUT) is often
infeasible. The resource limitations of embedded or battery-powered devices
may cause them to not provide trace collecting capabilities. DUT may contain
proprietary hardware or firmware that hides the implementation details and
prevents testers from collecting traces through source code instrumentation.
Even when collecting trace directly from the DUT is possible, the overhead
it causes may alter the behavior of the DUT due to the observer effect [28],
threatening the validation results.

An attractive alternative is to use wireless sniffers to record traffic gener-
ated by the DUT during testing. Sniffers do not require direct access to the
DUT or the need to alter its behavior. However, due to the fundamentally
unpredictable nature of wireless communications, the packets captured by the
sniffer will not exactly match those received by the DUT. The sniffer may
miss packets that the DUT received, or receive packets that the DUT missed.
This is true even when using multiple sniffers [8,25,3], a sniffer with multiple
antennas [31], or in isolated wireless environments.

Since the sniffer trace may not perfectly match the actual trace, uncertainty
arises during protocol implementation validation. For example, if the DUT
fails to respond correctly to a packet in the sniffer trace, it may either because
the DUT’s implementation is incorrect, or the DUT did not actually receive
the packet, or the DUT’s response was missed by the sniffer. Whenever the
DUT’s behavior does not match the specification, there are now two potential
explanations: either the DUT’s implementation is wrong, or the sniffer trace
is inaccurate. Accurate validation requires distinguishing between these two
causes.

We present a new technique that enables validation of protocol implemen-
tations using wireless sniffers. Given a monitor state machine representing
the protocol being validated, we describe a systematic transformation that
adds non-deterministic transitions to incorporate uncertainty introduced by
the sniffer. This augmented validation state machine implicitly defines a set
of mutated traces, each satisfying the original state machine with a specific
likelihood. If the set of mutated traces is empty, the implementation definitely

Wireless Protocol Validation Under Uncertainty 3

violates the protocol. Searching over all the mutated traces is NP-complete,
but the approach can be made practical by applying protocol-oblivious heuris-
tics that limit the search to likely mutated traces.

Our paper makes the following contributions:

1. To the best of our knowledge, we are the first to identify the uncertainty
problem caused by sniffers in validating wireless protocol implementations.

2. We formalize the problem using a nondeterministic state machine that sys-
tematically and completely encodes the uncertainty of the sniffer trace.

3. We characterize the NP-completeness of the validation problem, and present
two protocol-oblivious heuristics to prune the search space and make vali-
dation possible in practice.

4. We implement the validation framework and evaluate it using the NS-3
network simulator [29]. Our framework accurately identifies both synthetic
and previously unknown violations in NS-3’s implementations of the 802.11
and ARF protocols. We also applied our framework to a commercial product
under development and was able to found three latent bugs that were not
observed previously.

This paper is an extension of our work that appeared in RV 2016 [32]. We
added the proof for Lemma 1, 2 and Theorem 1. We included new results that
show the searching cost (Fig. 6), and details of the ARF protocol violations
(Section 5.2). Further, we reported the application of our framework to a
commercial product under development in Section 5.3.

2 Background and Motivating Example

We encountered the uncertainty problem while testing the protocol implemen-
tation of a popular wireless game controller. A custom wireless protocol was
designed to meet the low latency and low power consumption goals. As is
common industry practice, the protocol specification was then handed over to
wireless chipset vendors for implementation. However, neither implementation
details nor trace collection capabilities are provided in the shipped firmware
due to intellectual property constraints and device resource limitation. Hence
using sniffers to validate the protocol implementation is the only option.

We initially developed a tool to validate certain protocol properties over
the sniffer trace, yet often found unacceptable amount of false alarms due to
the incompleteness of the sniffer traces, making the tool virtually useless. It
was clear that we needed to account for sniffer uncertainty.

To better understand the incompleteness of sniffer trace, consider the IEEE
802.11 (also known as Wi-Fi) transmitter (DUT) state machine shown in
Fig. 1. After the DUT sends DATAi—a data packet with sequence number
i (s0 → s1), it starts a timer and waits for the acknowledgment packet—Ack.
The DUT either receives Ack within time To (s1 → s0), or it sends DATA

′
i—

retransmission of DATAi (s1 → s2). Similarly, the DUT either receives the

4 J. Shi, S. K. Lahiri, R. Chandra, G. Challen

i :=0
s1

DATA i

c :=0

i :=(i+1)%N

DATA 'i ;T o<c≤Tm

c :=0

Ack ;c≤T o

DATA(i+1)%N ;c>T o

s2s0

i :=(i+1)%N

init

Fig. 1: Monitor State Machine for 802.11 Transmitter.

Time

DATA0 DATA '0 AckTrDUT

Tr1

DATA0 DATA '0 AckAck

DATA0 DATA '0 AckAck

TrOTA

Tr2 AckDATA0

Fig. 2: Uncertainty of Sniffer Observations. TrOTA is the chronologi-
cal sequence of packets sent by the DUT and the receiver. TrDUT is DUT’s
internal events. Tr1 and Tr2 are two examples of many possible sniffer traces.

Ack within To (s2 → s0) or aborts transmission and moves on to next packet1

(s2 → s1).

Given a complete log of DUT’s packet transmission and reception events,
it is trivial to feed such a log into the state machine in Fig. 1 and validate the
correctness of DUT’s protocol implementation. However, due to DUT limita-
tions we have described earlier, this complete log is not available. As a result,
we seek to validate the DUT implementation using sniffers.

There are two fundamental properties in wireless communication that bring
uncertainty to sniffer’s observation: packet loss and physical diversity. The
sniffer could either miss packets sent from or to the DUT due to packet loss,
or overhear packets that are sent to but missed by the DUT due to physical
diversity. Note that packet alternation needs not be considered due to packet
level checksum mechanisms.

Consider a correct packet exchange sequence shown in Fig. 2. The DUT
first sends DATA0 . Suppose the receiver receives DATA0 and sends the Ack
which the DUT does not receive. Eventually the DUT’s timer fires and it sends
DATA′

0 . This time the DATA′
0 reaches receiver and the DUT also receives the

Ack.

Now consider two possible traces that could have been overheard by a
sniffer shown in Fig. 2. In first sniffer trace Tr1 where the sniffer overhears

1 To represent the state machine succinctly, our example assumes that the DUT retries
at most once.

Wireless Protocol Validation Under Uncertainty 5

the first Ack packet, a validation uncertainty arises when the sniffer sees the
DATA′

0 : was the previous Ack missed by the DUT or is there a bug in DUT
which causes it to retransmit even after receiving the Ack?

Similarly, consider the second possible sniffer trace Tr2 where both the
DATA′

0 and Ack packets were missed by the sniffer. During this period of
time, it appears the DUT neither receives Ack for DATA0 nor sends DATA′

0 .
Again, without any additional information it is impossible to disambiguate
between the sniffer missing certain packets and a bug in DUT’s retransmission
logic.

Informally, the question we set out to answer in this paper is: given the
protocol monitor state machine and the sniffer’s observation with inherent
uncertainty, how to accurately validate that the DUT behaves as specified?

3 Prerequisites and Problem Statement

3.1 Packet, Trace and Monitor State Machine

The alphabet of the monitor state machine is the finite set of all valid packets
defined by the protocol, denoted as P. A packet is a binary string of a finite
number of bits, encoding interesting protocol attributes such as src, dest,
type, flags, and physical layer information, such as channel, modulation,
etc. The input of the state machine then corresponds to a time-ordered se-
quence of packets.

Definition 1 (Packet Trace) A packet trace is a finite sequence of
(timestamp, packet) tuple: [(t1, p1), (t2, p2), . . . , (tn, pn)] where ti ∈ Z+ is the
discrete timestamp and pi is the packet observed at time ti. The timestamps
are strictly monotonically increasing: ti < ti+1 for 1 ≤ i < n.

In addition to timestamp monotonicity, we also require that adjacent pack-
ets do not overlap in time, ti+1 − ti > airtime(pi) for 1 ≤ i < n, where
airtime() calculates the time taken to transmit a packet. The timestamp
represents the observer’s local clock ticks, and need not to be synchronized
among devices.

We use timed automata [1] to model the expected behaviors of the DUT.
A timed automata is a finite state machine with timing constraints on the
transitions: each transition can optionally start one or more timers, which can
later be used to assert certain events should be seen before or after the time
out event. We refer the readers to [1] for more details about timed automata.

Definition 2 (Monitor) A protocol monitor state machine S is a 7-tuple
{Σ, S,X, s0, C,E,G}, where:

– Σ = P is the finite input alphabet.
– S is a non-empty, finite set of states. s0 ∈ S is the initial state.
– X is the set of boolean variables. We use v = {x← true/false | x ∈ X} to

denote an assignment of the variables. Let V be the set of such values v.

6 J. Shi, S. K. Lahiri, R. Chandra, G. Challen

– C is the set of clock variables. A clock variable can be reset along any state
transitions. At any instant, reading a clock variable returns the time elapsed
since last time it was reset.

– G is the set of guard conditions defined inductively by

g := true | c ≤ T | c ≥ T | x | ¬g | g1 ∧ g2

where c ∈ C is a clock variable, T is a constant, and x is a variable in X. A
transition can choose not to use guard conditions by setting g to be true.

– E ⊆ S× V× S× V×Σ ×G×P(C) gives the set of transitions.
⟨si, vi, sj , vj , p, g, C ′⟩ ∈ E represents that if the monitor is in state si with
variable assignments vi, given the input tuple (t, p) such that the guard g is
satisfied, the monitor can transition to a state sj with variable assignments
vj , and reset the clocks in C ′ to 0.

A tuple (ti, pi) in the packet trace means the packet pi is presented to the
state machine at time ti. As an example, the monitor state machine illustrated
in Fig. 1 can be formally defined as follows:

– Σ = {DATAi ,DATA
′
i ,Ack | 0 ≤ i < N }.

– Clock variables C = {c}. The only clock variable c is used for acknowledg-
ment time out.

– X = {i}, as a variable with log(N) + 1 bits to count from 0 to N .
– Guard constraints G = {c ≤ To, c > To, To < c ≤ Tm}. To is the acknowledg-

ment time out value, and Tm > To is the maximum delay allowed before the
retransmission packet gets sent. In this particular case, To can be arbitrary
large but not infinity in order to check the liveness of the DUT.

Definition 3 (Trace Rejection and Acceptance) A monitor state ma-
chine S rejects a trace Tr if there exists a prefix of Tr such that all states
reachable after consuming the prefix have no valid transitions for the next
(t, p) input. Otherwise, S accepts Tr (or Tr satisfies S).

The monitor state machine defines a timed language L which consists of
all valid packet traces that can be observed by the DUT. We now give the
definition of protocol compliance and violation.

Definition 4 (Violation and Compliance) Suppose T is the set of all
possible packet traces collected from DUT, and S is the state machine specified
by the protocol. The DUT violates the protocol specification if there exists a
packet trace Tr ∈ T such that S rejects Tr. Otherwise, the DUT is compliant
with the specification.

The focus of this paper is to determine whether a given sniffer trace Tr is
evidence of a violation.

Wireless Protocol Validation Under Uncertainty 7

3.2 Mutation Trace

As shown in the motivation example in Fig. 2, a sniffer trace may either
miss packets that are present in DUT trace, or contain extra packets that are
missing in DUT trace. Note that in the latter case, those extra packets must be
all sent to the DUT. This is because it is impossible for the sniffer to overhear
packets sent from the DUT that were not actually sent by the DUT.

We formally capture this relationship with the definition of mutation trace.

Definition 5 (Mutation Trace) A packet trace Tr′ is a mutation of sniffer
trace Tr w.r.t a DUT if for all (t, p) ∈ Tr \ Tr′, p.dest = DUT , where p.dest
is the destination of packet p.

By definition, either Tr′ ⊇ Tr (hence Tr \Tr′ = ∅), or those extra packets
in Tr but not in Tr′ are all sent to the DUT. Note that Tr′ may contain extra
packets that are either sent to or received by the DUT.

A mutation trace Tr′ represents a guess of the corresponding DUT packet
trace given sniffer trace Tr. In fact, the DUT packet trace must be one of the
mutation traces of the sniffer trace Tr.

Lemma 1 Let TrDUT and Tr be the DUT and sniffer packet trace captured
during the same protocol operation session, andM(Tr) be the set of mutation
traces of Tr with respect to DUT, then TrDUT ∈M(Tr).

Proof Let ∆ = Tr \ TrDUT be the set of packets that are in Tr but not in
TrDUT . Recall that it is not possible for the sniffer to observe packets sent
from the DUT that the DUT did not send. Therefore, all packets in ∆ are
sent to the DUT. That is, for all (t, p) ∈ ∆, p.dest = DUT . By Definition 5,
TrDUT ∈M(Tr). ⊓⊔

3.3 Problem Statement

Lemma 1 shows that M(Tr) is a complete set of guesses of the DUT packet
trace. Therefore, the problem of validating DUT implementation given a sniffer
trace can be formally defined as follows:

Problem 1 VALIDATION
instance A protocol monitor state machine S and a sniffer trace Tr.
question Does there exist a mutation trace Tr′ of Tr that satisfies S?

If the answer is no, a definite violation of the DUT implementation can
be claimed. Nevertheless, if the answer is yes, S may still reject TrDUT . In
other words, the conclusion of the validation can either be definitely wrong or
probably correct, but not definitely correct. This is the fundamental limitation
caused by the uncertainty of sniffer traces.

8 J. Shi, S. K. Lahiri, R. Chandra, G. Challen

i :=0
s1

DATAi

c :=0

i :=(i+1)%N

DATA' i ;T o<c≤T m

c :=0

Ack ;c≤T o

DATA
(i+1)%N ; c>T o

s2s0

i :=(i+1)%N Ack ; c≤T o Ack ; c≤T o

init

Fig. 3: Augmented Monitor State Machine. Augmented transitions are
highlighted in bold face. Pkt means either ϵ or Pkt.

4 Validation Framework

4.1 Augmented State Machine

To deal with the inherent uncertainty of sniffer traces, we propose to system-
atically augment the original monitor state machine with non-deterministic
transitions to account for the difference between the sniffer and DUT traces.

Before formally defining the augmented state machine, we first use an ex-
ample to illustrate the basic idea. Fig. 3 shows the augmented state machine
for 802.11 transmitter state machine shown in Fig. 1. For each existing tran-
sition (e.g., s0 → s1), we add an empty transition with same clock guards
and resetting clocks. This accounts for the possibility when such packet was
observed by the DUT but missed by the sniffer. Additionally, for each tran-
sition triggered by a receiving packet (i.e., p.dest = DUT), such as s1 → s0
and s2 → s0, we add a self transition with the same trigger packet and clock
guards, but an empty set of resetting clocks and no assignments to variables.
This allows the state machine to make progress when the sniffer missed such
packets.

There are two things to note. First, self transitions are added only for
packets sent to the DUT, since the sniffer will not overhear packets from the
DUT if they were not sent by the DUT. Second, no augmented transitions are
added for the packets that are sent to DUT yet are missed by both the DUT
and the sniffer, since such packets do not cause difference between the DUT
and sniffer traces.

The augmented state machine in Fig. 3 will accept the sniffer packet traces
Tr1 and Tr2 shown in Fig. 2. For instance, one accepting transition sequence
on sniffer trace Tr1 is s0 → s1 →s s1 → s2 → s0, and the sequence for Tr2 is
s0 → s1 →e s2 → s0, where→ is the transition from the original state machine,
→e and →s are the augmented empty and self transitions respectively.

We now formally define the augmented state machine.

Definition 6 (Augmented Monitor) An augmented state machine S+

for a monitor state machine S is a 7-tuple {Σ+, S,X, s0, C,E+, G}, where
S,X, s0, C,G are the same as S. Σ+ = {ϵ}∪Σ is the augmented input alphabet
with the empty symbol, and E+ ⊃ E is the set of transitions, which includes:

Wireless Protocol Validation Under Uncertainty 9

Algorithm 1 Obtain Augmented Transitions E+ from E

1: function augment(E)
2: E+ := ∅
3: for all ⟨si, vi, sj , vj , p, g, C′⟩ ∈ E do
4: E+ := E+ ∪ {⟨si, vi, sj , vj , p, g, C′⟩} ▷ Type-0
5: E+ := E+ ∪ {⟨si, vi, sj , vj , ϵ, g, C′⟩} ▷ Type-1
6: if p.dest = DUT then
7: E+ := E+ ∪ {⟨si, vi, si, vi, p, g, ∅⟩} ▷ Type-2

8: return E+

– E: existing transitions (Type-0) in S.
– E+

1 : empty transitions (Type-1) for transitions in E.
– E+

2 : self transitions (Type-2) for transitions triggered by receiving packets.

Algorithm 1 describes the process of transforming E into E+. In particular,
Line 4 adds existing transitions in E to E+, while line 5 and 7 add Type-1
and Type-2 transitions to E+ respectively. We have highlighted the elements
of the tuple that differ from the underlying Type-0 transition. Note that in
Type-2 transitions, both the state and the variables stay the same after the
transition.

With augmented state machine S+, we can use Type-1 transitions to non-
deterministically infer packets missed by the sniffer, and use Type-2 transitions
to consume extra packets captured by the sniffer but missed by the DUT.

An accepting run of S+ on sniffer trace Tr yields a mutation trace Tr′

which represents one possibility of the DUT trace. Specifically, Tr′ can be
obtained by adding missing packets indicated by Type-1 transitions to Tr,
and removing extra packets indicated by Type-2 transitions from Tr

We show that the VALIDATION problem is equivalent to the satisfiability
problem of Tr on S+.

Theorem 1 Let Tr be a sniffer trace,M(Tr) be Tr’s mutation traces, S and
S+ be the original and augmented monitor state machine respectively. There
exists a mutation trace Tr′ ∈M(Tr) that satisfies S if and only if Tr satisfies
S+.

Proof Assume Tr satisfies S+, and P is a sequence of accepting transitions,
we construct a mutation trace Tr′ using P and show that Tr′ satisfies S.

Initially, let Tr′ = Tr, then for each augmented transition
⟨si, vi, sj , vj , σ, g, C ′⟩ ∈ P :

– If this is a Type-1 transition, add (t, p) to Tr′, where t is a timestamp that
satisfies g and p is the missing packet.

– If this is a Type-2 transition, remove corresponding (t, p) from Tr′.

10 J. Shi, S. K. Lahiri, R. Chandra, G. Challen

It is obvious that Tr′ is a mutation trace of Tr, since only receiving packets
are removed in the process.

Now we show that there exists an accepting transition sequence P ′ of S+

on input Tr′ that does not contain augmented transitions. In particular, P ′

can be obtained by substituting all Type-1 transitions with corresponding
original transitions, and removing all Type-2 transitions. Since P ′ does not
contain augmented transitions, it is also an accepting transition sequence of S
on input Tr′, hence Tr′ satisfies S.

On the other hand, assume Tr′ ∈ M(Tr) and Tr′ satisfies S. Suppose P ′

is the accepting transition sequences of S on input Tr′. We first note that P ′

is also the accepting transitions of S+ on input Tr′, since E ⊂ E+.
We construct an accepting transition sequence P of S+ on input Tr as

follows.

– For each packet p ∈ Tr′ \Tr, substitute the transition ⟨si, vi, sj , vj , p, g, C ′⟩
with the corresponding Type-1 transition ⟨si, vi, sj , vj , ϵ, g, C ′⟩.

– For each transition ⟨si, vi, sj , vj , σ, g, C ′⟩ followed by packet p ∈ Tr \ Tr′,
add a Type-2 self transition ⟨sj , vj , sj , vj , p, g, ∅⟩. This is possible since Tr′

is a mutation trace of Tr, thus for all p ∈ Tr′ \ Tr, p.src ̸= DUT .

Therefore, Tr satisfies S+. ⊓⊔

By Theorem 1, the inherent uncertainty of the sniffer traces is explicitly
represented by the augmented transitions, and can be systematically explored
using the well established theory of state machine.

4.2 Problem Hardness

In this section, we show that the VALIDATION problem is NP-complete. In
fact, the problem is still NP-complete even with only one type of augmented
transitions.

Recall that Type-1 transitions are added because the sniffer may miss
packets. Suppose an imaginary sniffer that is able to capture every packet
ever transmitted, then only Type-2 transitions are needed since the sniffer
may still overhear packets sent to the DUT. Similarly, suppose another special
sniffer that would not overhear any packets sent to the DUT, then only Type-1
transitions are needed to infer missing packets.

We refer the augmented state machine that only has Type-0 and Type-1
transitions as S+

1 , and the augmented state machine that only has Type-0 and
Type-2 transitions as S+

2 . And we show that each subproblem of determining
trace satisfiability is NP-complete.

Problem 2 VALIDATION-1
Given that Tr \ TrDUT = ∅ (sniffer does not overhear packets).
instance Checker state machine S and sniffer trace Tr.
question Does S+

1 accept Tr?

Wireless Protocol Validation Under Uncertainty 11

s0 s1
i<n∧pkti ;c=0

ack i;c=1
c :=0, xi :=true , i :=i+1

i :=0,c :=0
x j:=false

 for 0≤ j<n

init

i<n−1∧pkt i+1 ;c=1

c :=0, i :=i+1

s2

i=n∧F∧pkt true ;c=0

i=n−1∧F∧pkt true ;c=1

Fig. 4: Monitor State Machine for SAT Problem.

Problem 3 VALIDATION-2
Given that TrDUT ⊆ Tr (sniffer does not miss packets).
instance Checker state machine S and sniffer trace Tr.
question Does S+

2 accept Tr?

Lemma 2 Both VALIDATION-1 and VALIDATION-2 are NP-complete.

Proof First, note that the length of mutation trace Tr′ is polynomial to the
length of Tr because of the discrete time stamp and non-overlapping packets
assumption. Therefore, given a state transition sequence as witness, it can
be verified in polynomial time whether or not it is an accepting transition
sequence, hence both VALIDATION-1 and VALIDATION-2 are in NP.

Next, we show how the SAT problem can be reduced to either one of the
two problems. Consider an instance of SAT problem of a propositional formula
F with n variables x0, x1, . . . , xn−1, we construct a corresponding protocol and
its monitor state machine as follows.

The protocol involves two devices: the DUT (transmitter) and the endpoint
(receiver). The DUT shall send a series of packets, pkt0, pkt1, . . . , pktn−1. For
each pkti, if the DUT receives the acknowledgment packet acki from the end-
point, it sets boolean variable xi to be true. Otherwise xi remains to be false.
After n rounds, the DUT evaluate the formula F using the assignments and
sends a special packet, pkttrue, if F is true. One round of the protocol op-
eration can be completed in polynomial time since any witness of F can be
evaluated in polynomial time.

The protocol monitor state machine S is shown in Fig. 4. Initially, all xi

is set to false. At state s0, the DUT shall transmit pkti within a unit time,
transit to s1 and reset the clock along the transition. At state s1, either the
DUT receives the acki packet and set xi to be true (s1 → s0), or the DUT
continues to transmit the next packet pkti+1. After n rounds, the state machine
is s0 or s1 depending on whether ackn−1 is received by the DUT. In either
case, the DUT shall evaluate F and transmit pkttrue if F is true.

Consider a sniffer trace Tr1 = {(0, pkt0), (2, pkt1), (4, pkt2), . . . , (2(n −
1), pktn−1), (2n, pkttrue)}. That is, the sniffer only captures all pkti plus the
final pkttrue, but none of acki. It is easy to see that F is satisfiable if S+

1

accepts Tr1. In particular, a successful run of S+
1 on Tr1 would have to guess,

for each pkti, whether the Type-1 empty transitions should be used to infer

12 J. Shi, S. K. Lahiri, R. Chandra, G. Challen

the missing acki packet, such that F is true at the end. Note that for Tr1, no
Type-2 self transitions can be used since all packets in Tr1 are sent from the
DUT. Therefore, the SAT problem of F can be reduced to the VALIDATION-1
problem of S+

1 on sniffer trace Tr1.
On the other hand, consider another sniffer trace Tr2 =

{(0, pkt0), (1, ack0), (2, pkt1), (3, ack1), . . . , (2n− 2, pktn−1), (2n− 1, ackn−1),
(2n, pkttrue}. That is, the sniffer captures all n pair of pkti and acki packets
and the final pkttrue packet. Similar to Tr1, F is satisfiable if S+

2 accepts
Tr2. A successful transition sequence of S+

2 on Tr2 must decide for each acki
packet, whether Type-2 self transitions should be used, so that F can be
evaluated as true at the end. Therefore, the SAT problem of F can also be
reduced to the VALIDATION-2 problem of S+

2 on sniffer trace Tr2.
Since SAT is known to be NP-complete, both the VALIDATION-1 and the

VALIDATION-2 problem are also NP-complete. ⊓⊔

The hardness statement of the general VALIDATION problem naturally
follows Lemma 2.

Theorem 2 VALIDATION is NP-complete.

4.3 Searching Strategies

In this section, we present an exhaustive search algorithm of the accepting
transition sequence of S+ on sniffer trace Tr. It is guaranteed to yield an
accepting sequence if there exists one, thus is exhaustive. In the next sections,
we present heuristics to limit the search to accepting sequences of S+ that
require relatively fewer transitions from E+

1 ∪E
+
2 . Due to the NP-completeness

of the problem, this also makes the algorithm meaningful in practice.
The main routines of the algorithm are shown in Algorithm 2. In the top

level SEARCH routine, we first obtain the augmented state machine S+, and
then call the recursive EXTEND function with an empty prefix, the sniffer trace,
and the S+’s initial state. In the EXTEND function, we try to consume the
first packet in the remaining trace using either Type-0, Type-1 or Type-2
transition. Note that we always try to use Type-0 transitions before other two
augmented transitions (line 6). This ensures the first found mutation trace
will have the most number of Type-0 transitions among all possible mutation
traces. Intuitively, this means the search algorithm tries to utilize the sniffer’s
observation as much as possible before considering the packet loss by the sniffer
or DUT.

Each of the extend functions either returns the mutation trace Tr′, or nil
if the search fails. In both EXTEND-0 and EXTEND-2 function, if there is a valid
transition, we try to consume the next packet either by appending it to the
prefix (line 13) or dropping it (line 26). While in EXTEND-1, we guess a missing
packet without consuming the next real packet (line 20). Note that since only
Type-0 and Type-2 consume packets, the recursion terminates if there is a
valid Type-0 or Type-2 transition for the last packet (line 12 and line 25).

Wireless Protocol Validation Under Uncertainty 13

Algorithm 2 Exhaustive search algorithm of S+ on Tr.

1: function search(S, Tr)
2: S+ := augment(S)
3: return extend([], Tr, S+.s0)

4: function extend(prefix, p::suffix, s)
5: if not likely(prefix) then return nila

6: for i ∈ [0, 1, 2] do
7: mutation := EXTEND-i(prefix, p::suffix, s)
8: if mutation ̸= nil then return mutation

9: return nil
10: function extend-0(prefix, p::suffix, s)
11: for ⟨s, s′, p⟩b ∈ E do
12: if suffix = nil then return prefix@p

13: mutation := extend(prefix@p, suffix, s′)
14: if mutation ̸= nil then return mutation

15: return nil
16: function extend-1(prefix, p::suffix, s)
17: for all ⟨s, s′, q⟩ ∈ E+

1 do
18: if q.time > p.time then
19: continue
20: mutation := extend(prefix@q, p::suffix, s′)
21: if mutation ̸= nil then return mutation

22: return nil
23: function extend-2(prefix, p::suffix, s)
24: for all ⟨s, s, p⟩ ∈ E+

2 do
25: if suffix = nil then return prefix

26: mutation := extend(prefix, suffix, s)
27: if mutation ̸= nil then return mutation

28: return nil

a This check should be ignored in the exhaustive algorithm.
b ⟨s, s′, p⟩ is short for ⟨s, ∗, s′, ∗, p, ∗, ∗⟩

It is not hard to see that Algorithm 2 terminates on any sniffer traces.
Each node in the transition tree only has finite number of possible next steps,
and the depth of Type-1 transitions is limited by the time available before the
next packet (line 18).

4.4 Pruning Heuristics

In the face of uncertainty between a possible protocol violation and sniffer im-
perfection, augmented transitions provide the ability to blame the latter. The
exhaustive nature of Algorithm 2 means that it always tries to blame sniffer
imperfection whenever possible, making it reluctant to report true violations.

Inspired by the directed model checking [12] technique which is to miti-
gate the state explosion problem, we propose to enforce extra constraints on
the mutation trace to restrict the search to only mutation traces with high

14 J. Shi, S. K. Lahiri, R. Chandra, G. Challen

likelihood. The modified EXTEND function checks certain likelihood constraints
on the prefix of the mutation trace before continuing (line 5), and stops the
current search branch immediately if the prefix seems unlikely. Because of the
recursive nature of the algorithm, other branches which may have a higher
likelihood can then be explored.

The strictness of the likelihood constraint represents a trade-off between
precision and recall of validation. The more strict the constraints are, the
more false positive violations will potentially be reported, hence the lower the
precision yet higher recall. On the contrary, the more tractable the constraints
are, the more tolerant the search is to sniffer imperfection, hence the more
likely that it will report true violations, thus higher precision but lower recall.

The exact forms of the constraints may depend on many factors, such as the
nature of the protocol, properties of the sniffer, or domain knowledge. Next, we
propose two protocol oblivious heuristics based on the sniffer loss probabilities
and general protocol operations. Both heuristic contains parameters that can
be fine tuned in practice.

4.4.1 NumMissing(d, l, k)

This heuristic states that the number of missing packets from device d in any
sub mutation traces of length l shall not exceed k (k ≤ l). The sliding window
of size l serves two purposes. First, l should be large enough for the calculated
packet loss ratio to be statistically meaningful. Second, it ensures that the
packet losses are evenly distributed among the entire packet trace.

The intuition behind this heuristic is that the sniffer’s empirical packet loss
probability can usually be measured before validation. Therefore, the like-
lihood that the sniffer misses more packets than prior measured loss ratio
is quite low. The value of l and k can then be configured such that k/l is
marginally larger than the measured ratio.

4.4.2 GoBack(k)

This heuristic states that the search should only backtrack at most k steps
when the search gets stuck using only E. The motivation is that many pro-
tocols operate as a sequence of independent transactions, and the uncertainty
of previous transactions often does not affect the next transaction. For in-
stance, in 802.11 packet transmission protocol, each packet exchange, include
the original, retransmission and acknowledgment packets, constitutes a trans-
action. And the retransmission status of previous packets has no effect on the
packets with subsequent sequence numbers, hence need not be explored when
resolving the uncertainty of the packets with new sequence numbers. Note that
we do not require the protocol to specify an exact transaction boundary, but
only need k to be sufficiently large to cover a transaction.

Wireless Protocol Validation Under Uncertainty 15

5 Case Studies

We present case studies on applying our validation framework on two protocols
implemented in the NS-3 network simulator: 802.11 data transmission and
ARF rate control algorithm. The goal is to demonstrate how our framework
can avoid false alarms and report true violations on incomplete sniffer traces
and report true violations. We also report the application of our framework to
a commercial product under development.

5.1 802.11 Data Transmission

In this section, we first show that our framework can improve validation preci-
sion by inferring the missing or extra packets using the augmented transition
framework. We then demonstrate the ability of our framework to detect true
violations by manually introducing bugs in theNS-3 implementation and show
the precision and recall of validation results.

5.1.1 Experimental Setup

We set up two Wi-Fi devices acting as the transmitter (DUT) and receiver
respectively. Another Wi-Fi device is configured in monitor mode and acts as
the sniffer. During the experiments,we collect both the DUT packet trace (the
ground truth) and the sniffer trace.

The DUT and endpoint are configured to use the IEEE 802.11g standard
with both RTS/CTS and fragmentation disabled. A Constant Bit Rate (CBR)
UDP traffic (54 Mbps) is generated from the DUT to the endpoint. The UDP
packet size is 1436 bytes, which results in a 1500 bytes Wi-Fi packet.

In order to control the packet loss ratios between each pair of de-
vices, we developed a new propagation loss model for NS-3 called
MatrixRandomPropagationLossModel. Instead of a constant propagation loss
as in existing MatrixPropagationLossModel, the signal propagation loss be-
tween a pair of nodes is determined by a binary random variable of two values:
0 dB (no loss) and 1000 dB (complete loss). Therefore, any packet loss prob-
ability can be achieved by adjusting the random variable distribution. The
model supports both symmetric and asymmetric propagation losses. We use
symmetric propagation loss in all our experiments. Finally, pcap capture is
enabled in both the DUT and the sniffer devices.

5.1.2 Verifying Unmodified Implementation

In the original monitor state machine shown in Fig. 1, we set acknowledgment
timeout To = 334µs, maximum retransmission delay Tm = 15ms according to

16 J. Shi, S. K. Lahiri, R. Chandra, G. Challen

the protocol. We also adapt the state machine to include multiple retransmis-
sions2 instead of one.

Let Prds, Pres and Pred be the packet loss probability between the DUT
and sniffer, endpoint and sniffer, endpoint and DUT respectively. Pred rep-
resents the characteristics of the system being tested, while Prds and Pres
represent the sniffer’s quality in capturing packets.

We vary each of the three probabilities, Prds, Pres and Pred, from 0 to 0.5
(both inclusive) with 0.05 step. For each loss ratio combination, we ran the
experiment 5 times, and each run lasted 30 seconds. In total, 6655 (113 × 5)
pairs of DUT and sniffer packet traces were collected.

To establish the ground truth of violations, we first verify the DUT packet
traces using the original state machine S. This can be achieved by disabling
augmented transitions in our framework. As expected, no violation is detected
in any DUT packet traces.

We then verify the sniffer traces using the augmented state machine S+.
For the GoBack(k) heuristic, we set k = 7, which is the maximum number of
transmissions of a single packet. For the NumMissing(d, l, k) heuristic, we set
the sliding window size l = 100, and k = 80 such that no violation is reported.
The relationship of k and validation precision is studied in next section.

Next, we present detailed analysis of the augmented transitions on the snif-
fer traces. The goal is to study for a given system packet loss probability Pred,
how the sniffer packet loss properties (Prds and Pres) affect the difference be-
tween the DUT trace and the mutation trace, which represents a guess of the
DUT trace by the augmented state machine based on the sniffer trace.

For all following analysis, we divide the traces into three groups according
to Pred: low (0 ≤ Pred ≤ 0.15), medium (0.20 ≤ Pred ≤ 0.35) and high
(0.40 ≤ Pred ≤ 0.50).

The difference between two packet traces can be quantified by the Jaccard
distance metric.

Jaccard(Tr1, T r2) =
|Tr1 ⊖ Tr2|
|Tr1 ∪ Tr2|

(1)

where ⊖ is the symmetric difference operator. The distance is 0 if the two
traces are identical, and is 1 when the two traces are completely different. The
smaller the distance is, the more similar the two traces are.

A näıve way to calculate the Jaccard distance of two traces is to use the
hash of the (time, packet) pair for set intersection and union operation. How-
ever, it does not work for mutation trace which contains fabricated packets
with no actual payload. Therefore, we use a protocol specific canonical rep-
resentation of packets when calculating the distance. In particular, the string
r DATA i t represents the tth transmission of a data packet with sequence
number i, and r represents the round of sequence numbers as it wraps after
4096. And similarly r ACK i t is the corresponding acknowledgment packet.

2 The exact number of retransmissions is not part of the protocol, and NS-3 implementa-
tion set this to be 7.

Wireless Protocol Validation Under Uncertainty 17

Pds 0.00.10.20.30.40.5

Pes
0.0

0.1
0.2

0.3
0.4

0.5
0.0

0.1

0.2

0.3

(a) 0.05 ≤ Pred ≤ 0.15

Pds 0.00.10.20.30.40.5

Pes
0.0

0.1
0.2

0.3
0.4

0.5
0.0

0.1

0.2

0.3

(b) 0.2 ≤ Pred ≤ 0.35

Pds 0.00.10.20.30.40.5

Pes
0.0

0.1
0.2

0.3
0.4

0.5
0.0

0.1

0.2

0.3

(c) 0.4 ≤ Pred ≤ 0.5

Fig. 5: Jaccard Distance Between Mutation and DUT Traces. For each
data point, the mean of the 5 runs is used.

Fig. 5 shows the Jaccard Distance between mutation and its corresponding
DUT trace. We make the following observations. First, for a given system loss
probability Pred (each sub-figure), the lower the sniffer packet loss probability
(Prds and Pres), the smaller Jaccard distance between the DUT and mutation
trace. Intuitively, this means a sniffer that misses less packets can enable our
framework to better reconstruct the DUT trace.

Second, we observe a protocol-specific trend that Prds is more dominant
than Pres. This is because retransmission packets of the same sequence number
are identical, hence when the sniffer misses multiple retransmission packets,
our framework only needs to infer one retransmission packet to continue state
machine execution.

Finally, as the system loss probability Pred increases, the Jaccard distance
increases more rapidly as Prds increases. This is because the ratio of retrans-
mission packet increases along with Pred.

We then evaluate the cost of resolving uncertainty. In particular, we use
the Average Search Steps Per Packet (ASSPP) as a metric to quantify the
search cost. It is calculated by dividing the total number of search steps by
the number of packets in the packet trace. For DUT traces, ASSPP is always 1
since there is no uncertainty. For sniffer traces, however, multiple search steps
must be conducted to resolve the potential uncertainty of each packet in the
sniffer trace.

Fig. 6 shows the distribution of ASSPP at different Pred. Similar to the
case in Fig. 5, Prds plays a dominant role in determine the searching cost. One
interesting observation for this particular protocol is that the search cost peaks
when Prds is high while Pres is low. In such loss probability combinations,
sniffer misses many data packets from the DUT but picks up lots of dangling
Ack packets from the DUT. Because the Ack packet has neither sequence
numbers nor retry flag, the searching algorithm had a hard time resolving
such uncertainty.

18 J. Shi, S. K. Lahiri, R. Chandra, G. Challen

Pds 0.00.10.20.30.40.5

Pes
0.0

0.1
0.2

0.3
0.4

0.5
0
20
40
60
80
100

(a) Pred ∈ [0.05, 0.10, 0.15]

Pds 0.00.10.20.30.40.5

Pes
0.0

0.1
0.2

0.3
0.4

0.5
0
20
40
60
80
100

(b) Pred ∈ [0.2, 0.25, 0.3, 0.35]

Pds 0.00.10.20.30.40.5

Pes
0.0

0.1
0.2

0.3
0.4

0.5
0
20
40
60
80
100

(c) Pred ∈ [0.40, 0.45, 0.50]

Fig. 6:Average Searching Step Per Packet. For each data point, the mean
of 5 runs is used.

5.1.3 Introducing Bugs

We have demonstrated that our framework can tolerate sniffer imperfections
and avoid raising false alarms. The next question is, can it detect true viola-
tions? To answer this question, we manually introduce several bugs in NS-3
implementation that concerns various aspects of 802.11 data transmission pro-
tocol. More specifically, the bugs are:

– Sequence Number: the DUT does not assign sequence number correctly.
For example, it may increase sequence by 2 instead of 1, or it does not
increase sequence number after certain packet, etc. We choose one type of
such bugs in each run.

– Semantic: the DUT may retransmit even after receiving Ack, or does not
retransmit when not receiving Ack.

We instrument the NS-3 implementation to embed instances of bugs in
each category. At each experiment run, we randomly decide whether and which
bug to introduce for each category. We fix Prds = Pres = 0.1 and vary Pred
from 0.0 to 0.5 with 0.01 step. For each Pred value, we ran the experiment 100
times, of which roughly 75 experiments contained bugs. In total, 5100 pairs of
DUT and sniffer traces were collected.

We use the DUT packet traces as ground truth of whether or not each
experiment run contains bugs. For each Pred value, we calculate the precision
and recall of violation detection using the sniffer traces.

Precision =
|{Reported Bugs} ∩ {True Bugs}|

|{Reported Bugs}|
(2)

Recall =
|{Reported Bugs} ∩ {True Bugs}|

|{True Bugs}|
(3)

The precision metric quantifies how useful the validation results are , while
the recall metric measures how complete the validation results are.

Fig. 7 shows the CDF of precision and recall of the 51 experiments for
various k values. For precision, as expected, the more tolerant the search to

Wireless Protocol Validation Under Uncertainty 19

0.5 0.6 0.7 0.8 0.9 1.0
Precision

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

k = 10
k = 15
k = 20
k = 25
k = 30

0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

k = 10
k = 15
k = 20
k = 25
k = 30

Fig. 7: Precision and Recall of Validation Results.

sniffer losses (larger k), the more tolerant the framework is to sniffer losses,
and the more precise the violation detection. In particular, when k = 30, the
precisions are 100% for all Pred values. Second, the recall is less sensitive to
the choice of k. Except for the extreme case when k = 30, all other thresholds
can report almost all the violations.

5.2 ARF Rate Control Algorithm

We report a bug found in NS-3 ARF [21] implementation which causes the
sender to get stuck at a lower rate even after enough number of consecutive
successes. The bug was detected using sniffer traces and confirmed by both
the DUT trace and source code inspection.

Automatic Rate Fallback (ARF) [21] is the first rate control algorithm in
literature. In ARF, the sender increases the bit rate after Th1 number of con-
secutive successes or Th2 number of packets with at most one retransmission.
The sender decreases bit rate after two consecutive packet failures or if the first
packet sent after rate increase (commonly referred as probing packet) fails.

Fig. 8 shows the state machine S for the packet trace collected at sender
(DUT), where DATAr

i denotes a data packet with sequence number i and bit
rate r, DATAr ′

i is a retransmission packet and Ack is the acknowledgment
packet. The pkg succ function is shown in Algorithm 3.

The succ variable is used to track the number of consecutive packet suc-
cesses. It is increased after each packet success , and is reset to 0 after a
rate increase or upon a packet failure (s1 → s2). Similarly, count is to track
the number of packets with at most one retransmission, and is increased after
packet success, or for the first packet retransmission (s1 → s2). It is reset when
there are two consecutive packet failures (s2 → s3). Finally, the probe flag is
set upon rate increases to indicate the probing packet, and is cleared upon
packet success. The variable r is the current bit rate, which is decreased if the
probing packet fails (s1 → s4), or every two consecutive failures (s2 → s3). If

20 J. Shi, S. K. Lahiri, R. Chandra, G. Challen

s0 s1

s4

DATA i
r DATA i

r '∧¬probe
s2

DATA i
r '

DATAr−1 '∧probe
DATA i

r '

Ack

Ack

init

i :=0, r :=0
succ:=0
count :=0
probe:=false

pkt_succ ()

pkt_succ () r :=r−1

succ:=0
count :=count+1

s3

DATA i
r−1 '

r :=r−1
count :=0

Fig. 8: Monitor State Machine for ARF Rate Control Algorithm.
Timing constraints are omitted for succinctness.

Algorithm 3 pkt succ function

1: function pkt succ
2: i := (i+1)%N
3: succ := succ + 1
4: count := count + 1
5: probe := false
6: if r < R and (succ ≥ Th1 or count ≥ Th2) then
7: r := r+1
8: succ := 0
9: count := 0
10: probe := true

r is not the highest rate, it is increased when either of the two thresholds are
reached.

In particular, the bug we found lies in the implementation’s pkt succ func-
tion in line 6. Instead of checking count ≥ Th 2, the implementation checks
count == Th 2. This bug also exists in the NS-3 implementation of Adaptive
ARF (AARF) algorithm [22] and the pseudo code implementation of AARF
in [23].

Note that the count variable is incremented twice if a packet succeed after
one retransmission: once in s1 → s2, once in the pkt succ function for the
retransmission packet. Therefore, if the value of count is Th2−1 and the next
packet succeed after one retransmission, the value of count will be Th2 + 1,
which would fail the implementation’s test of count == Th 2.

5.3 Industrial Application

We have applied our framework for runtime verification of the wireless protocol
implementation of a commercial product that has several millions of shipping
devices. The product runs a proprietary wireless protocol to reduce latency and
power consumption. Sniffer traces were collected in regular testing process, but
were only manually inspected previously.

We obtained 75 sniffer traces from the testing team for a new version of the
protocol that is under development and testing. This team has been testing the

Wireless Protocol Validation Under Uncertainty 21

Protocol Aspects Traces Violations (%)

Sequence Number 3049 1539 (50.48%)
Station Scheduling 3046 2045 (67.14%)
Uplink Modulation 3127 8 (0.26%)
Downlink Modulation 3127 24 (0.77%)

Table 1: Validation Results on Traces from the Gaming Controller
Wireless Protocol.

implementation for a few weeks. Each trace contained around 6 million packets
that were captured during 1 hour and 40 minutes of protocol operation.

We first split the traces into 100,000 packet segments, which yields 3127
traces for testing. We then applied our framework on the traces to validate the
DUT implementation. We found that the latest implementation of the proto-
col under development had violations of the protocol specification. Some of the
implementation bugs we found related to the sequence number management,
station scheduling during power saving mode, and modulation rates adapta-
tion. Table 1 summarizes the validation results. The Traces column shows the
number of traces that we have successfully validated for each category, and the
third column shows the fraction of traces that contain at least one violation
in that category.

Note that if we disable the augmented transitions, each trace will be flagged
as violation because of the missing packets, thereby reducing the usability of
the tool. We also note that some bugs manifest more often than others. For
instance, the bugs related to packet sequence number and station scheduler
were detected in about half the traces, and the bug related to the rate control
algorithm was detected in only a few traces. This is because the previous two
aspects are essential in all protocol operations, while the bugs related to rate
control only manifest themselves under certain link conditions.

After communicating with the testing team, we confirmed that the se-
quence number bug was already known, as it is relatively easy to detect even
by manually examining the traces. The bug related to station scheduling was
also noticed before, yet no quantitative results about how frequent this bug
appears were obtained because of the lack of automatized validating tools.
Finally, the bug related to rate control, which was unknown previously, has
been filed as a bug report. All reported bugs were fixed before the next release
the product.

6 Related Work

Hidden Markov Model (HMM) Approach. When considering the whole
system under test (both DUT and endpoint), the sniffer only captures a subset
of the all the packets (events). This is similar to the event sampling problem
in runtime verification [6,18,2,14,5,33]. In particular, Stoller et al [34] used
HMM-based state estimation techniques to calculate the confidence that the

22 J. Shi, S. K. Lahiri, R. Chandra, G. Challen

temporal property is satisfied in the presence of gaps in observation. HMM-
based approaches proposed in [34] suffer from overhead of both running time
and memory consumption. Optimizations such as approximate precomputed
tables [4] and particle filtering [20] were later proposed.

In our problem, there are not only gaps in the observation (packets missed
by the sniffer), but also uncertainty regarding observed events, which lies in
whether a packet in the sniffer trace was received by its destination device.
This unique challenge makes it infeasible to directly apply the HMM-based ap-
proaches proposed in [34]. Besides, there are several advantages of our proposed
augmented transition approach. First, the automatically augmented state ma-
chine precisely encodes the protocol specification and the uncertainty. This is
intuitive to design and natural for reporting the evidence for a trace being
successful. We do not require a user to specify the number of states of the
underlying HMM, or accurately provide underlying probabilities. Second, we
use timed automata to monitor the timing constraints which are common in
wireless protocols. It may be non-trivial to encode such timing information in
HMM. Finally, we can exploit domain knowledge to devise effective pruning
heuristics to rule out unlikely sequences during the exhaustive search.

Edit Distance. The closet work to ours is [19], which uses the weighted
edit distance to measure the robustness between digitized Cyber-Physical Sys-
tem (CPS) signals and STL specifications. The automaton of verifying STL
properties is first translated into weighted edit automaton, which explicitly
handles substitution, insertion and deletion by augmenting the original au-
tomaton with transitions and associating to them the appropriate weight func-
tion. An observed signal sequence is then input into the weighted edit automa-
ton to compute the weighted edit distance between the observation and the
specification.

We share the same spirit with [19] in that we also explicitly handle the
sniffer trace uncertainty using the augmented transitions. However, there is
no need for substitution in our application scenario, as the sniffer can only
either receive or miss a packet, but can not mis-interpret packets. In addition,
[19] only considers real value observations, and relies on this restriction to
define the edit distance for insertion transitions. The approach can not be
directly applied in our case since we need to deal with compound observations
(packets).

Network Protocol Validation. Lee et al [24] studied the problem of
passive network testing of network management. The system input/output
behavior is only partially observable. However, the uncertainty only lies in
missing events in the observation, while in the context of wireless protocol
verification, the uncertainty could also be caused by extra events not observed
by the tested system. Additionally, they do not provide any formal guarantees
even for cases when we report a definite bug. Software model checking tech-
niques [27,16] have also been used to verify network protocols. Our problem is
unique because of the observation uncertainty caused by sniffers. Our frame-
work shares similarity with angelic verification [10] where the program verifier
reports a warning only when no acceptable specification exists on unknowns.

Wireless Protocol Validation Under Uncertainty 23

Testing Under Uncertainty. The position paper by Rosemblum et
al [13] contains excellent motivation for the need to combat uncertainty foun-
dationally when testing systems. McKinley et al [7,30] deals with checking
assertions in programs dealing with noisy data from sensors. Instead of check-
ing the truth or falsity of assertions, they model the probability distribution
of the assertion conditions and perform Monte-carlo based simulations to es-
timate the probabilities. Our work can be seen as leveraging non-determinism
to weaken the specification logically to precisely define the problem complex-
ity, and use probabilities to guide the search for likely mutations. Other works
have used sampling to find data-race bugs [26], and ensure that the sampling
does not lead to spurious alarms.

7 Conclusions

We formally define an instance of the uncertainty problem in validating wire-
less protocol implementations using sniffers. We describe a systematic aug-
mentation of the protocol state machine to explicitly encode the uncertainty
of sniffer traces. We characterize the NP-completeness of the problem and pro-
pose both an exhaustive search algorithm and heuristics to restrict the search
to more likely traces. We present two case studies using NS-3 network sim-
ulator to demonstrate how our framework can improve validation precision
and detect real bugs. We also report the application of our framework on a
commercial product under development.

Finally, we discuss a few challenges and future directions.
Verification Coverage. Given a single sniffer trace, it is possible that not

all the states in the state machine are visited during the verification process.
For instance, a rate control state machine based on certain consecutive packet
losses patterns can not be verified if no such consecutive losses appear in the
sniffer trace. In general, given a protocol state machine, it is challenging to
extract the packet patterns for each state to be reached and to alter the testing
such that such patterns can be observed.

Automated State Machine Construction. We manually constructed
the protocol monitor state machines for the protocols studied in this paper
based on the source code, comments and documentation. The process involves
lots of labor effort and is time-consuming. A potential alternative is to au-
tomatically learn the sketch of the monitor state machines from the sniffer
traces. Domain knowledge can then be leveraged to improve the sketch state
machines.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer science,
126(2):183–235, 1994.

2. M. Arnold, M. Vechev, and E. Yahav. Qvm: an efficient runtime for detecting defects
in deployed systems. In ACM Sigplan Notices, volume 43, pages 143–162. ACM, 2008.

24 J. Shi, S. K. Lahiri, R. Chandra, G. Challen

3. P. Bahl, R. Chandra, J. Padhye, L. Ravindranath, M. Singh, A. Wolman, and B. Zill.
Enhancing the security of corporate Wi-Fi networks using DAIR. In Proceedings of the
4th international conference on Mobile systems, applications and services, pages 1–14.
ACM, 2006.

4. E. Bartocci, R. Grosu, A. Karmarkar, S. A. Smolka, S. D. Stoller, E. Zadok, and
J. Seyster. Adaptive runtime verification. In International Conference on Runtime
Verification, pages 168–182. Springer, 2012.

5. D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu. Monitoring compliance poli-
cies over incomplete and disagreeing logs. In International Conference on Runtime
Verification, pages 151–167. Springer, 2012.

6. B. Bonakdarpour, S. Navabpour, and S. Fischmeister. Sampling-based runtime verifi-
cation. In FM 2011: Formal Methods, pages 88–102. Springer, 2011.

7. J. Bornholt, T. Mytkowicz, and K. S. McKinley. Uncertain¡ t¿: A first-order type for
uncertain data. ACM SIGARCH Computer Architecture News, 42(1):51–66, 2014.

8. Y.-C. Cheng, J. Bellardo, P. Benkö, A. C. Snoeren, G. M. Voelker, and S. Savage.
Jigsaw: solving the puzzle of enterprise 802.11 analysis, volume 36. ACM, 2006.

9. M. Ciabarra. WiFried: iOS 8 WiFi Issue. https://goo.gl/KtRDqk.
10. A. Das, S. K. Lahiri, A. Lal, and Y. Li. Angelic verification: Precise verification modulo

unknowns. In Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, pages 324–342, 2015.

11. digitalmediaphile. Windows 10 wifi issues with surface pro 3 and surface 3. http:

//goo.gl/vBqiEo.
12. S. Edelkamp, V. Schuppan, D. Bošnački, A. Wijs, A. Fehnker, and H. Aljazzar. Sur-

vey on directed model checking. In International Workshop on Model Checking and
Artificial Intelligence, pages 65–89. Springer, 2008.

13. S. Elbaum and D. S. Rosenblum. Known unknowns: Testing in the presence of un-
certainty. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, pages 833–836, New York, NY, USA,
2014. ACM.

14. L. Fei and S. P. Midkiff. Artemis: Practical runtime monitoring of applications for
execution anomalies. In ACM SIGPLAN Notices, volume 41, pages 84–95. ACM, 2006.

15. Gizmodo. The worst bugs in android 5.0 lollipop and how to fix them. http://goo.gl/
akDcvA.

16. P. Godefroid. Model checking for programming languages using verisoft. In Proceed-
ings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 174–186. ACM, 1997.

17. Google. Google contact lens. https://en.wikipedia.org/wiki/Google_Contact_Lens.
18. M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak detection using adaptive

statistical profiling. In Acm Sigplan Notices, volume 39, pages 156–164. ACM, 2004.
19. S. Jakšić, E. Bartocci, R. Grosu, and D. Ničković. Quantitative monitoring of stl with

edit distance. In International Conference on Runtime Verification, pages 201–218.
Springer, 2016.

20. K. Kalajdzic, E. Bartocci, S. A. Smolka, S. D. Stoller, and R. Grosu. Runtime verifica-
tion with particle filtering. In International Conference on Runtime Verification, pages
149–166. Springer, 2013.

21. A. Kamerman and L. Monteban. Wavelan R⃝-ii: a high-performance wireless lan for the
unlicensed band. Bell Labs technical journal, 2(3):118–133, 1997.

22. M. Lacage, M. H. Manshaei, and T. Turletti. IEEE 802.11 rate adaptation: a practi-
cal approach. In Proceedings of the 7th ACM international symposium on Modeling,
analysis and simulation of wireless and mobile systems, pages 126–134. ACM, 2004.

23. M. Lacage, M. H. Manshaei, and T. Turletti. IEEE 802.11 rate adaptation: a practical
approach. [Research Report] RR-5208, (¡inria-00070784¿):25, 2004.

24. D. Lee, A. N. Netravali, K. K. Sabnani, B. Sugla, and A. John. Passive testing and
applications to network management. In Network Protocols, 1997. Proceedings., 1997
International Conference on, pages 113–122. IEEE, 1997.

25. R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Analyzing the mac-level be-
havior of wireless networks in the wild. In ACM SIGCOMM Computer Communication
Review, volume 36, pages 75–86. ACM, 2006.

https://goo.gl/KtRDqk
http://goo.gl/vBqiEo
http://goo.gl/vBqiEo
http://goo.gl/akDcvA
http://goo.gl/akDcvA
https://en.wikipedia.org/wiki/Google_Contact_Lens

Wireless Protocol Validation Under Uncertainty 25

26. D. Marino, M. Musuvathi, and S. Narayanasamy. Literace: effective sampling for
lightweight data-race detection. In ACM Sigplan Notices, volume 44, pages 134–143.
ACM, 2009.

27. M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC: A prag-
matic approach to model checking real code. ACM SIGOPS Operating Systems Review,
36(SI):75–88, 2002.

28. T. Mytkowicz, P. F. Sweeney, M. Hauswirth, and A. Diwan. Observer effect and mea-
surement bias in performance analysis. 2008.

29. G. F. Riley and T. R. Henderson. The ns-3 network simulator. In Modeling and Tools
for Network Simulation, pages 15–34. Springer, 2010.

30. A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley, D. Grossman, and L. Ceze.
Expressing and verifying probabilistic assertions. In ACM SIGPLAN Notices, vol-
ume 49, pages 112–122. ACM, 2014.

31. Savvius Inc. Savvius Wi-Fi adapters. https://goo.gl/l3VXSx.
32. J. Shi, S. K. Lahiri, R. Chandra, and G. Challen. Wireless Protocol Validation Under

Uncertainty, pages 351–367. Springer International Publishing, Cham, 2016.
33. A. P. Sistla, M. Žefran, and Y. Feng. Runtime monitoring of stochastic cyber-physical

systems with hybrid state. In International Conference on Runtime Verification, pages
276–293. Springer, 2011.

34. S. D. Stoller, E. Bartocci, J. Seyster, R. Grosu, K. Havelund, S. A. Smolka, and E. Zadok.
Runtime verification with state estimation. In Runtime Verification, pages 193–207.
Springer, 2011.

35. Wikipedia. Chromecast. https://en.wikipedia.org/wiki/Chromecast.
36. Wikipedia. Xbox One controller. https://en.wikipedia.org/wiki/Xbox_One_

Controller.

https://goo.gl/l3VXSx
https://en.wikipedia.org/wiki/Chromecast
https://en.wikipedia.org/wiki/Xbox_One_Controller
https://en.wikipedia.org/wiki/Xbox_One_Controller

	Introduction
	Background and Motivating Example
	Prerequisites and Problem Statement
	Validation Framework
	Case Studies
	Related Work
	Conclusions

