
The nature of modern apps makes automatically quantifying
QoE very challenging. On Android, complicated UI hierarchies
and the multi-threaded, multi-process nature of apps contribute
to the difficulties in analyzing and improving QoE.

QoE-centric Mobile Operating System Design
Scott Haseley and Geoffrey Challen

University at Buffalo - Department of Computer Science and Engineering

Smartphone Quality of Experience

Users care about how mobile operating systems
manage human-facing resources, such as time, battery
life, and metered mobile data. The management of
these resources contributes to a smartphone user's
quality of experience.

QoE-centric Policies

Input Output

X

Process
While modern operating systems such as Android
make decisions based on policies meant to improve
QoE, it is unclear that these static policies always
result in the right decisions. Static policies such as the
Linux ondemand CPU governor and Android's use of
cgroups would benefit from QoE feedback.

Samples from 10 devices over 7 days were taken in
intervals of 1s. This plot shows intervals where
both background tasks and foreground tasks ran on
the same core.

Challenges in Quantifying QoE

In order to measure QoE and understand a task's contribution
to it, mobile operating systems may need to be redesigned to
improve their view of the system.

QoE-centric Design Principles

To meet smartphone users’ expectations, it is necessary to design systems that can
accurately measure and understand QoE, and make decisions based on QoE. QoE-
centric operating systems should:

Active Wait Detection

Quantifying QoE Via State Detection

QoE-aware Networking

Tracking network activity on smartphones from packets
to pixels will help mobile operating systems improve
quality of experience.

In order to further improve QoE for apps that use the
network, the effect of a network flow on QoE should
be considered by the network itself.

Input events can lead to state transitions in an app's view tree. Detecting various app
states and state transitions can help the OS improve QoE. For example, the length of
the state transition will often correspond to user-perceived latency, a contributing factor
to QoE. By measuring the length of the state transition, we can measure user-perceived
latency which will help quantify QoE.

While current operating systems are adept at managing
hardware resources such as CPUs, disks, and memory,
there is a lot that must be redesigned to quantify and
improve QoE.

The ondemand CPU governor increases CPU
frequency to the maximum when there is work to do.
But, is this always necessary to improve QoE? If the
CPUs run at a lower frequency, they run more
efficiently and can improve battery life.

Android uses Linux cgroups to limit background tasks
to ~5% CPU share. However, misuse of thread
priorities or AsyncTasks can cause this policy to fail to
meet its goal. Process scheduling could benefit from
knowing a task's impact on QoE.

The Twitter app on Android
consists of a very
complicated view tree and
more than 65 threads
contributing to what you see
on-screen!

Given the operating system's
vantage point, it is hard to
determine what contributes
to QoE.

• Accurately measure QoE
• Understand the contributions of various resources to QoE
• Continuously prioritize resources based on QoE
• Minimize the effect of background tasks on battery consumption
• Minimize metered mobile data usage, where possible

QoE-sensative traffic should be prioritized over time-
insensitive traffic, such as that of certain background
tasks.

Improving QoE across the network will require
fundamental changes. We will begin to explore protocol
changes and promising technology like SDN to meet
this challenge.

Understanding a network flow's impact on QoE will
allow the OS to prioritize network resources within the
device. Furthermore, understanding the flow of data
from the network to the screen has the potential to
reduce mobile data and battery consumption.

Active waiting, such as when a progress bar or throbber is on-screen, is a hint that the
app is in a QoE-critical section. The OS can use this information to prioritize resources.
We observe that active waiting produces an interesting graphical pattern, and are working
on building a classifier to detect it.




