
Algorithms for CPU and DRAM DVFS Under
Inefficiency Constraints

Rizwana Begum∗, Mark Hempstead†, Guru Prasad Srinivasa‡ and Geoffrey Challen‡
∗School of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA. Email: rb639@drexel.edu

†School of Electrical and Computer Engineering, Tufts University, Medford, MA, USA. Email: mark.hempstead@tufts.edu
‡School of Computer Science and Engineering, University at Buffalo, Buffalo, NY, USA. Email: {gurupras, challen}@buffalo.edu

Abstract—Dynamic voltage and frequency scaling (DVFS) of
both the core and DRAM provides opportunities to trade-off
performance in order to save energy. Previous approaches to core
and DRAM power management using DVFS used performance,
specifically acceptable performance loss, as a constraint. We
present energy management algorithms that coordinate core
and DRAM frequency scaling under a specified energy budget.
Approaches that work under performance constraints, as we will
show, are not directly applicable to systems operating under
energy constraints, as it is difficult to calculate the correct
performance bounds in real-time to stay under an energy budget.

Setting arbitrary energy budgets for a diverse set of applications
can be harmful to application performance. We use the previously
introduced concept of Inefficiency—the additional amount of
energy above the minimum required energy that can be used to
improve performance—to provide a dynamic energy constraint
to our system. We introduce new power management algorithms
that search the power and performance space to find the best
performing point under this constraint. We demonstrate the effi-
cacy of our algorithms using CPU DVFS and DRAM frequency
scaling. We show that our algorithms have 24% lower tuning
cost and save up to 5% energy with a little performance loss
compared to a state-of-the-art performance constrained system.

I. INTRODUCTION

New algorithms and metrics are needed for systems with
multiple tunable components in order to efficiently search
a multidimensional energy and performance space. Dynamic
Voltage and Frequency Scaling (DVFS) has been explored in
the past for compute cores to make energy-performance trade-
offs [1], [2]. Recently, frequency scaling for main memory,
specifically for DRAMs has shown promise in trading energy
savings for performance [3]. Scaling frequency of both cores
and DRAMs simultaneously demands a coordinated approach
that considers the cross-component effect of frequency scaling.
CoScale is one such approach, proposed for server systems,
that effectively searches for core and DRAM frequencies while
staying under a configurable performance loss constraint [4].

Setting performance constraints for server systems is apt, as
these systems are wall powered and have QoS requirements
to meet. Setting power constraints is also reasonable in order
to reduce the operational cost of the servers. However, de-
vices that operate on a battery need to operate under energy
constraints and not performance or power constraints in order
to prolong battery life. While performance constraints do not
consider the availability of limited energy resources, power
constraints only capture instantaneous current draw rather than
the total energy consumption of an application [5]. Energy

management approaches that work under performance con-
straints, as we will show, can not be directly used for systems
operating under energy constraints. One approach, that could
be used for mobile devices, is to specify a performance bound
as a proxy for energy savings; this is difficult, as the necessary
performance bound for a target energy reduction varies across
applications and devices. In this paper, we focus on exploring
the CPU and DRAM frequency space under energy constraints.
Approaches proposed in the past, that use energy constraints
to manage energy, use metrics of absolute energy or rate
of energy consumption (power) as a constraint [6], [7], [8].
Choosing the right absolute value for an energy budget in
Joules is hard as different applications and devices have dif-
ferent ranges of energy consumption. We use a relative energy
constraint, Inefficiency that specifies the additional amount of
energy that can be used to improve performance [9].

We introduced Inefficiency in our previous work in the con-
text of studying application characteristics and their energy-
performance trade-offs using offline analysis [9]. However,
computing Inefficiency can be computationally expensive and
in our previous work, we neither computed Inefficiency at
run-time nor did we use it to tune the system dynamically.
In this paper, we present a holistic approach that uses in-
efficiency as a constraint, profiles the application at runtime
and, using the energy models that we developed, selects best
frequency settings to stay under given inefficiency budget.
Our cross-component performance and energy models consider
the impact of scaling frequency of one component on the
other, and have average error of less than 4% across SPEC
benchmarks. We profile the application periodically and feed
the profiled statistics to our energy management algorithms
which search for the best frequency settings to stay under given
inefficiency budget. Doing an exhaustive search for the best
frequency settings comes at a high cost, though it succeeds in
delivering the best performance. We present new relative and
adaptive algorithms that reduce the cost of a search with lower
performance loss. We compare our algorithms with CoScale’s
search algorithm [4] and show that:

• Our algorithms have 24% lower tuning cost than CoScale
on average across all SPEC benchmarks.

• The cost of our tuning algorithms is a function of appli-
cation characteristics and not the inefficiency constraint,
while CoScale’s tuning cost increases with the value of
the performance bound.

• Our system stays within the specified inefficiency budget
and saves up to 5% energy with a little performance loss
compared to the system using CoScale’s search algorithm.



5 10 15 20 25 30 40 60 80 100
Performance Bounds (%)

0
5

10
15
20
25
30
35
40

E
ne

rg
y

Sa
vi

ng
s

(%
)

bzip2
gobmk
lbm
libquantum
mcf
milc

Fig. 1: Energy Savings vs. Performance Bounds: Energy savings
vary across applications for a given performance bound.

II. PERFORMANCE VS. ENERGY CONSTRAINTS

Previously, DVFS has been used to save energy by either
taking advantage of slack in the system or by degrading
performance within a performance constraint [2], [4], [10].
Mobile systems are battery powered and have limited energy
resources. Therefore, it is imperative that these systems are
aware of the amount of energy they have and need so the
system can manage energy as a resource. Choosing the ac-
ceptable performance loss bound in order to achieve a specific
energy savings target is difficult, as the relationship between
performance and energy varies across applications and devices.
Figure 1 plots the energy savings achieved by CoScale for
multiple applications across various performance bounds. The
algorithm lowers frequency of the core and DRAM to save
energy but aims to never reduce performance more than the
specified bound. A performance bound of 10% allows the
execution time to increase by 10% compared to the execution
time at maximum frequencies, while 100% performance bound
allows the execution time to be doubled in order to save
energy. As shown in the figure, the energy savings achieved
for a specified performance bound vary across applications. For
example, a performance bound of 10% saves anywhere from
5% to 15% energy. This makes energy management difficult
because if the system wanted to save a certain amount of
energy, say 20%, it would require a performance bound of
15%-50% depending upon the application. Determining the
performance bound for a target energy savings is a daunting
task and requires oracle knowledge of the applications and
devices.

Energy management approaches that operate under energy
constraints have been proposed in the past—primarily for
single components [7], [8]. Most of these approaches use
an absolute energy budget or rate of energy consumption as
constraints. Both, energy and rate of energy consumption are
application and device dependent. Therefore they need to be
recomputed for every combination of application and device
which makes it impractical to use these metrics as user or OS
configurable constraints.

A. Inefficiency

We define Inefficiency as the additional amount of energy
that the application can use to improve performance [9]. It
is the ratio of application’s energy consumption (E) and the
minimum energy the application could have consumed (Emin)
on the same device: I = E

Emin

Inefficiency is application independent: Minimum energy
that the applications consume on a given device, Emin, varies

Absolute Energy Budget

E
m
in

En
er

gy

Device B

E
m
in

Inefficiency Budget 

Device A

Absolute Energy Budget

E
m
in

En
er

gy

High Priority 
Application

E
m
in

Inefficiency Budget

Low Priority 
Application

I=1.3

I=1.5I=1.5

I=1.5

(a) (b)
Fig. 2: Inefficiency vs. Absolute Energy Constraints: Inefficiency
is both application and device independent.

across applications. Therefore specifying a fixed absolute en-
ergy budget across applications may allow some applications
to run with their maximum performance while make others
run the slowest. If a fixed absolute energy budget is used, then
low priority background applications with lower Emin could run
with higher performance compared to the gaming applications
that have higher Emin requirements. Inefficiency considers the
inherent energy needs of the application by considering Emin.
Therefore, a fixed inefficiency budget gives similar room to all
the applications to improve performance, removing the need
to recompute the inefficiency budget across applications, and
thereby making inefficiency an application independent metric.

Inefficiency is device agnostic: Emin of an application varies
across devices, based on the power-performance profile of the
device. Figure 2(a) illustrates that using a similar inefficiency
budget across devices (A and B) results in different energy
consumption while leaving similar room for the application to
improve performance. While an absolute energy budget needs
to be recomputed to provide similar energy resources to the
application across devices, inefficiency doesn’t.

Inefficiency as a system resource: The application and
device agnostic nature of inefficiency makes it a powerful
tool that can be used by the OS to prioritize energy needs
across applications and divide energy resources across multiple
components of a device. A question that arises while using
inefficiency to specify energy constraints in a real system is:
How is the inefficiency budget for an application chosen?
Inefficiency can take any value between 1 and Imax, where Imax
is application and device dependent. The inefficiency budget
can either be set by the user or the application to meet a
specific system goal. A user may be willing to use more energy
on an application either because more performance is required
or the device is in an environment where it can readily be
recharged. As an example, if the user is willing to use 50%
more energy for a given application, their specification can be
met by setting an inefficiency budget of 1.5 for that application.
On the other hand, the OS can also map the inefficiency budget
to application priorities, as illustrated in Figure 2(b), allowing
higher priority applications to run at higher inefficiency and
achieve higher performance, while lower priority applications
can be given lower inefficiency budgets, such as the value of
1.3 used in the example illustration.

In this paper, we propose a system to demonstrate the use of
inefficiency as an energy constraint and show how a system
can stay within a given inefficiency budget while delivering
best performance. We leave exploring the other aspects of
inefficiency, including the system-level interfaces, hardware



E
min 

Search

Statistics

E
min X

Inefficiency

E
total

Optimal 
Settings 
Search

Final 
settings

Timet
1

t
0

Energy 
Models

Energy 
Models Available 

Settings

Fig. 3: Energy Management Approach: Searches for Emin and best
settings for a given inefficiency budget using energy models.

implementations, and choice of system-wide inefficiency se-
lection to future work.

III. ENERGY MANAGEMENT SYSTEM DESIGN

In this section we present the design of our system that takes
inefficiency as an input and dynamically—during the appli-
cation execution—chooses the core and DRAM frequencies
that deliver optimal performance and stay under the specified
inefficiency budget. Figure 3 summarizes the approach that
our system takes to choose the best settings. The application
statistics are collected periodically and are passed to the Emin
search algorithm. The algorithm finds the minimum energy,
Emin, that the given application phase could have consumed
using the energy models. The total energy budget, E, is then
computed using the inefficiency and estimated Emin and is
passed to the algorithm that searches for the best settings. The
algorithm filters the settings that fall under given budget and
chooses the settings that deliver the best performance. In the
end, the system transitions to the selected frequency settings.
Two important aspects of our system are: 1) the performance
and energy estimation models 2) the algorithms that search for
Emin and the best frequency settings for the core and DRAM.

A. Performance and Energy Models

Our energy management system needs predictive models that
can estimate the performance and energy of an application
under a new set of frequency settings based on statistics
gathered from the current frequency settings. Our cross-
component models consider the impact of scaling one com-
ponent’s frequency on both the performance and energy of
the other component. Our performance model estimates the
execution time at different frequency settings using statistics
(stats) gathered from the application while it executes at the
current frequency setting. The energy model uses the estimated
execution time from the performance model and the stats to
predict energy consumption at target frequency settings.

Performance Model: The performance model works by com-
puting the time spent in three states for each component, Busy,
Idle and Waiting. In Busy state, CPU executes instructions
and DRAM serves read, write requests or performs mandatory
refreshes. Idle is the state when a component is stalled on other
components, while in Waiting state the component is idle due
to no work in the system. We also distinguish why the CPU
is Idle; is it waiting on the cache (CPU frequency domain) or
waiting on the DRAM (DRAM frequency domain)? We do not
classify the DRAM Idle time further as the DRAM is idle only

when it receives no requests to process from the CPU (CPU
frequency domain). We then scale the time for each state to
estimate the total amount of time it will take the system to
complete the work at target frequency settings.

In our model, the Idle time of one component depends on
the settings of the second component. The time that CPU is
Idle waiting for the cache is scaled linearly with the CPU
frequency as the caches in our system operate under the CPU
frequency domain [10]. The CPU Idle time waiting for the
DRAM is scaled with memory frequency. The performance of
the DRAM doesn’t scale linearly with frequency, as it consists
of both synchronous (read, write) and asynchronous (activate,
precharge and refresh) operations. We added hardware perfor-
mance counters to measure scalable and non-scalable time of
the DRAM, and use the ratio to scale the time spent in DRAM
frequency dependent states as shown in the below equation:

CMI = (CMI ∗ memScalableFraction ∗ currMemFreq /
newMemFreq) + CMI ∗ (1 – memScalableFraction)

where CMI denotes the idle time of CPU waiting for the mem-
ory and memScalableFraction is the ratio of memScalableTime
and the total time over which stats are collected. The Busy time
of each component scales with its own frequency. However,
part of the Busy time that overlaps with the other component
is constrained by the slowest component.

Our model is able to estimate and scale the time spent in
each of the three states in a light-weight manner using a
total of 14 stats—also shared by the energy model. The stats
used by our models are measured using hardware performance
counters, which are used widely in commercial chips [11],
[12]. ARM microprocessors can already monitor more than 50
performance events [11] and Intel processors include counters
that estimate CPU energy [12]. Table I lists the stats used
by our performance and energy models. Out of the 14 stats,
7 stats are needed by the memory power model as dictated
by the Micron power models [13], and hardware performance
counters used for measuring these are already included in
modern systems [11], [12]. Only 7 new stats are introduced:

• cpuBusyTime – Represents the time the CPU spends
executing instructions.

• cpuIdleForDRAMTime, cpuIdleForCacheTime – Time
when the CPU pipeline is stalled waiting for the DRAM
or Cache respectively.

• cpuQuiesceTime – Time when the CPU is idle due to
lack of instructions to execute. Currently in our framework,
we always observed zero cpuQuiesceTime, as there is
no network or Input/Output operations in our workloads.

Stat Comments
cpuBusyTime, cpuIdleForCacheTime, Energy, New

CPU cpuIdleForDRAMTime, cpuQuiesceTime
memReads, memWrites, memActivates,

memPrecharges, memRefreshes, Energy
DRAM memPrechargeTime, memActiveTime

memBusyTime, memPrechargeIdleOverlapTime, New
memActiveIdleOverlapTime

TABLE I: Stats Used in Our Models: Counters labeled ’Energy’
are used in the energy models in addition to performance model. The
counters that are newly introduced are labeled with ’New’.



as
ta

r
bz

ip
2

de
al

II
gc

c
go

bm
k

h2
64

re
f

hm
m

er
lb

m
lib

qu
an

tu
m

m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rl
be

nc
h

po
vr

ay
sj

en
g

so
pl

ex
sp

ec
ra

nd
99

8
sp

ec
ra

nd
99

9
sp

hi
nx

xa
la

nc
bm

k0
2
4
6
8

10
12
14

Pe
rf

or
m

an
ce

es
tim

at
io

n
er

ro
r(

%
)

(a)

min
median
avg

as
ta

r
bz

ip
2

de
al

II
gc

c
go

bm
k

h2
64

re
f

hm
m

er
lb

m
lib

qu
an

tu
m

m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rl
be

nc
h

po
vr

ay
sj

en
g

so
pl

ex
sp

ec
ra

nd
99

8
sp

ec
ra

nd
99

9
sp

hi
nx

xa
la

nc
bm

k0
2
4
6
8

10
12
14

E
ne

rg
y

es
tim

at
io

n
er

ro
r(

%
)

(b)

min
median
avg

as
ta

r
bz

ip
2

de
al

II
gc

c
go

bm
k

h2
64

re
f

hm
m

er
lb

m
lib

qu
an

tu
m

m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rl
be

nc
h

po
vr

ay
sj

en
g

so
pl

ex
sp

ec
ra

nd
99

8
sp

ec
ra

nd
99

9
sp

hi
nx

xa
la

nc
bm

k0
5

10
15
20
25
30

E
ne

rg
y

es
tim

at
io

n
er

ro
r(

%
)

(c)
Fig. 4: Model Estimation Error for SPEC2006: Average error is less than 4%; max error is less than 10% except gobmk and lbm.

However, incorporating this stat into our model makes it
possible to add additional components to the system.

• memBusyTime – Time when the DRAM is busy either
reading or writing. It also includes the time taken by those
refreshes that halt the processing of requests, as these
refreshes are mandatory and cannot be eliminated.

• memPrechargeIdleOverlapTime, memActiveIdleOver-
lapTime – Time when the memory is idle and all of its
rows are precharged or at least one of its rows is open
respectively. We classify idle time of memory into active
and precharge time as the background power of DRAM
varies across its active and precharge states.

Once the performance model estimates execution time by
scaling each of the states, the execution time along with scaled
stats are passed on to the energy model to compute energy
consumption at target frequencies.

CPU Energy Model: The CPU energy model predicts the
energy consumption of the CPU at target frequency settings
using measured stats and estimated execution time. The model
can by summarized by the following equation:
cpuEnergy = Pdyn ∗ cpuBusyTime + Pbkgnd ∗

cpuClockedTime + Pleak ∗ cpuTotalTime

While cpuBusyTime and cpuTotalTime are measured stats and
estimated execution time respectively, cpuClockedTime is the
difference between cpuTotalTime and cpuQuiesceTime—the
time when CPU in our system is clock gated as it has no
instructions to execute.

Our processor power model is based on empirical measure-
ments of a PandaBoard [14] consisting of OMAP4430 chipset
with Cortex A9 processor. We measure peak dynamic power
(Pdyn) of 190mW and scale it quadratic with voltage and
linear with frequency (P∝V2f ). We measured peak back-
ground power (Pbkgnd) of 208mW by calculating the difference
between the CPU power consumption in its power on idle
state and deep sleep mode (not clocked). Because background
power is clocked, it is scaled in a similar manner to dynamic
power. Leakage power (Pleak) comprises up to 30% of peak
power consumption [15] and is linearly proportional to supply
voltage [16]. Our peak power measurements agree with the
numbers reported by [17] and the datasheets.

Memory Energy Model: We designed an extended version of
the Micron Power Calculators [13] that incorporates frequency
scaling. Similar to the CPU energy model, we divide the
memory energy into dynamic, leakage and background energy.
Our stats measure the events, specifically activates, precharges,

reads, writes that result in dynamic energy consumption.
Leakage energy is a result of refreshes that are performed
periodically to retain the saved data. Memory background
power varies based on memory state, active or precharge
measured by memActiveTime and memPrechargeTime stats
respectively. We take the timing and power numbers from
Micron spec sheets [18] and use our stats to estimate energy
consumption of DRAM.

Model Estimation Error: We measure our model error by
comparing the predicted energy with the measured (using our
models) energy consumption after running the application at
the actual frequency. We simulate 12 integer and 9 floating
point SPEC CPU2006 benchmarks [19] using a cycle accu-
rate full system simulator, Gem5 [20]. We sample hardware
performance counters every 10 million userspace instructions.
We distinguish between user and kernel mode instructions
to ensure uniform samples across frequencies. We utilize
Gem5’s capabilities to separate the user mode and kernel mode
hardware performance counters. We ran 70 simulations for
each benchmark, for a combination of 10 CPU and 7 memory
frequency steps. For each of the 70 settings, we estimate
energy using the collected stats and use it as ground truth. We
predict performance and energy for the other 69 settings and
compare the predicted energy and performance with the ground
truth performance and energy data of the target frequencies.

We summarize the amount of error observed in performance
and energy estimation in Figure 4 by plotting minimum,
median and average absolute error for each simulated bench-
mark. As shown in Figure 4(a) average error of our perfor-
mance model across benchmarks is less than 4% except for
gobmk(6%) and lbm(10%). More than 50% of the predictions
have less than 3% error, showing that our model is more than
97% accurate. Figure 4(b) shows that, in general, the trend
in energy estimation error follows the error in performance
estimation. However, not all of the performance estimation
error translates to energy estimation error. Error in the energy
estimate depends on the ratio of background and dynamic en-
ergy of the application which in-turn depend on the estimated
execution time and the amount of work done respectively.

To understand the entire distribution of error we plotted box
plots for the error and analyzed benchmarks with large error
distributions. Figure 4(c) shows that the maximum energy
estimation error barring the outliers is less than 10% for all of
the SPEC benchmarks except for gobmk (18%) and lbm(24%).
The large error observed for gobmk and lbm occurs rarely in
our simulations, only when jumping from one frequency to
frequencies vary far away.



E
min

Current E
min

Current 
Settings

Cluster

CPU Frequency

D
R

A
M

 F
re

q
u

e
n

cy

Fig. 5: Relative Search: Uses a hill climbing algorithm for Emin

search, and gradual increase in search steps for cluster search.

B. Algorithms

In this section, we present algorithms for searching Emin and
the best frequency settings under given inefficiency budget.
These algorithms form an essential part of our energy manage-
ment system as shown in Figure 3. We classify our algorithms
into two categories 1) search and 2) select algorithms. Search
algorithms search for Emin and find all possible settings that
fall under given inefficiency budget. We call the set of possible
settings that fall under given inefficiency budget a cluster.
Select algorithms select the optimal frequency settings from
the cluster. We present two search algorithms, Exhaustive
search and Relative search. Emin is a function of application
characteristics including the mix of, and dependencies be-
tween, CPU and memory instructions. Therefore, Emin varies
across applications and application phases, consequently the
optimal settings (CPU and memory frequency) also move. An
Exhaustive search for Emin finds the optimal settings, however
there is a high cost to perform the computation. The Relative
search algorithm reduces the tuning cost with a very little
loss in application performance. We propose two selection
algorithms, Best performing selection and Adaptive selection.
Best performing selection selects the settings that deliver the
best performance however, it requires frequent tuning in order
to adapt to application phases and not lose performance. On the
other hand, Adaptive selection further reduces tuning overhead
by not tuning in the long stable phases of the application and
aims to not lose more performance than a specified threshold.
Each algorithm is described in detail below.

Exhaustive Search (ex): The algorithm estimates energy con-
sumption at each combination of core and DRAM frequency.
After it populates the entire surface describing all of core and
DRAM frequencies and their energy consumption, it finds the
settings that consume least energy, Emin. Note that, because
of leakage energy and the application’s dynamic power, the
lowest frequency point is not where Emin exists. Low frequency
settings result in longer execution times which increase the
leakage energy, sometimes more than the decrease in the
dynamic energy, thereby shifting Emin to higher than minimum
frequencies. Once Emin is found, using the already populated
energy surface, the cluster of settings that fall under given
inefficiency budget are filtered. The cluster is then passed on
to the selection algorithms that choose the optimal settings.

Relative Search (rl): Estimating energy at each core and
DRAM frequency combination is expensive. Our models
take 10us to estimate energy at one pair of core and DRAM
frequencies, as measured on a 1GHz Cortex-A9 processor.

1  Initialize best_settings with the first setting in the cluster 
2  current_settings = settings selected during the previous tuning 
3  for settings in cluster
4   if settings.performance > best_settings.performance
5   best_settings = settings
6   if settings == current_settings
7   current_settings_found = True
8  if current_settings_found is True
9   performance_loss = difference(best_settings,current_settings)
10   if performance_loss is within threshold
11   final_settings = current_settings
12   skip_tuning_intervals++
13       relative_search_steps++
14   else
15   final_settings = best_settings
16   skip_tuning_intervals = 0
17  else
18     final_settings = best_settings
19     skip_tuning_intervals = 0

Fig. 6: Adaptive Selection: An efficient algorithm to select optimal
frequency settings under given inefficiency budget.

Based on the observation that for some applications Emin and
the best settings move slowly, we propose relative search
algorithm that works as shown in Figure 5.

We implement a hill climbing algorithm for Emin search that
starts from the Emin settings found in the previous tuning
interval. It estimates energy at all combinations of core and
DRAM frequencies that are one step away and finds the
settings with the lowest energy. The algorithm moves to the
newly found settings and repeats the search until no other
settings in the region have lower energy than the current
Emin point. We also propose a relative search for finding the
cluster of frequencies that fall under given inefficiency budget.
The search starts from the best settings found in the previous
interval and increases the search space by one step each time,
until it finds at least one setting that has inefficiency within
given budget. Note that, a relative search might get stuck
in a local minima and not find the point that delivers best
performance as the search stops as soon as it finds any point
that falls within given budget in the interest of reducing tuning
overhead. To address this shortcoming, the algorithm gradually
increases it’s search steps and moves to the best performing
point in subsequent tunings (with the help of feedback from
adaptive select, described in detail below), thereby results in
loss of application performance (less than 3% for most of the
SPEC benchmarks) compared to exhaustive search.

Best Performing Selection (bp): The algorithm selects the
frequency settings that result in least execution time among
all of the settings in the given cluster.

Adaptive Selection (ad): This algorithm is designed to detect
application phases and skip tuning if the application has longer
stable phases. The algorithm is also capable of detecting
“possible” stuck in local minima due to relative search and
helps by giving feedback to the relative search algorithm to
exit the local minima region.

Pseudo code for the adaptive selection algorithm is presented
in Figure 6. It starts by searching for the settings that deliver
best performance in the given cluster (lines 3-5). It also
determines if the current operating frequencies of the system
fall within given inefficiency budget (lines 6-7). If so, the
algorithm computes the performance loss of running at current
settings compared to the best performing settings (lines 8-9).
If the performance loss is within given threshold, then the
algorithm directs the system to continue running at current



Emin search Cluster search Transition latency

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

rl-ad

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

ex-bp

0
200
400
600
800

1000
1200
1400

Tu
ni

ng
O

ve
rh

ea
d

(x
10

00
C

PU
cy

cl
es

)

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

ex-ad

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

rl-bp
(a) bzip2

Emin search Cluster search Transition latency

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

rl-ad

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

ex-bp

0
200
400
600
800

1000
1200
1400

Tu
ni

ng
O

ve
rh

ea
d

(x
10

00
C

PU
cy

cl
es

)

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

ex-ad

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

rl-bp
(b) gobmk

Emin search Cluster search Transition latency

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

rl-ad

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

ex-bp

0
200
400
600
800

1000
1200
1400
1600

Tu
ni

ng
O

ve
rh

ea
d

(x
10

00
C

PU
cy

cl
es

)

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

ex-ad

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

rl-bp
(c) lbm

Emin search Cluster search Transition latency

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

rl-ad

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

ex-bp

0
200
400
600
800

1000
1200
1400

Tu
ni

ng
O

ve
rh

ea
d

(x
10

00
C

PU
cy

cl
es

)

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

ex-ad

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

rl-bp
(d) mcf

Fig. 7: Tuning Overhead: rl-ad significantly improves tuning overhead compared to ex-bp with <3% loss in application performance.

frequencies (line 11). The algorithm takes the selection of the
same settings as a hint of stable phase, and therefore directs
the system to skip tuning for the next interval. The selection of
same settings in subsequent tunings results in a linear increase
in tuning intervals to be skipped (line 12). A selection of same
settings could also be the result of being stuck in a local
minima, therefore it increments the relative search steps by
1 to expand the search space for next tuning in order to exit
the local minima region (line 13). If the algorithm doesn’t find
the current settings in the cluster or if the performance loss
at current settings is greater than the specified threshold, the
algorithm directs the system to run at best performing settings
and resets the number of tuning intervals to be skipped to zero
(line 14-19).

IV. EVALUATION

Algorithms presented in Section III-B perform two computa-
tions: 1) search for Emin and 2) find the cluster to select optimal
settings, therefore result in higher tuning overhead compared to
the algorithms operating under performance constraints, which
only do the second computation. We introduced relative search
and adaptive selection algorithms to reduce the tuning cost.
In this section, we evaluate our algorithms and compare their
tuning cost, application performance, and energy to the results
of CoScale’s search algorithm [4].

A. Experimental Methodology

Memory frequency scaling is not supported in current hard-
ware systems, therefore we resort to Gem5—a cycle accurate
full system simulator [20]—with default core configuration
provided by Gem5 in revision 10585, that reflects ARM
Cortex-A15 processor with L1 cache of size 64 KB, access
latency of 2 core cycles and a unified L2 cache of size 2 MB
with hit latency of 12 core cycles. The CPU and caches operate
under the same clock domain. CPU clock domain frequency
is configured to have a range of 100–1000 MHZ in steps of
30MHz with highest voltage being 1.25V. For the memory
system, we simulate a LPDDR3 single channel, one rank
memory using an open-page access policy. Timing and current
parameters for LPDDR3 are configured as specified in data

sheets from Micron [18]. We extended Gem5 to support mem-
ory frequency scaling, and developed governors for the Linux
kernel to support dynamic frequency scaling of DRAM. The
memory clock domain is configured with a frequency range
of 200MHz to 800MHz in steps of 100MHz. We do not scale
memory voltage. The power supplies—VDD and VDD2—for
LPDDR3 are fixed at 1.8V and 1.2V respectively [18].

We simulate 21 SPEC CPU2006 benchmarks [19]. We tune
every ≈10M cycles with the goal of keeping the amount
of work the same between two consecutive tunings. The
system presented in CoScale tunes every scheduling quantum,
i.e., every 5ms. To do a fair comparison, we run CoScale’s
algorithm at the same tuning interval as our system.

B. Results

We experiment with all four combinations of our search and se-
lect algorithms, namely 1) Exhaustive search-Best Performing
selection(ex-bp) 2) Exhaustive search-Adaptive selection (ex-
ad) 3) Relative search-Best Performing selection(rl-bp) and 4)
Relative search-Adaptive selection(rl-ad). We compare results
of these 4 combinations to CoScale’s algorithm. Comparing the
results of our algorithm to that of CoScale’s is difficult because
our algorithm works under energy constraints while CoScale
works under a performance constraint. Therefore, we first
need to determine the performance bound for each application
for a given inefficiency budget. We do so by computing the
difference between application’s execution time at maximum
frequencies and the execution time using ex-bp algorithm—that
results in best performance for a given inefficiency budget—
without including its tuning overhead. We then run CoScale
simulations with the estimated performance bounds.

Tuning Overhead: Figure 7 plots tuning cost of our algo-
rithms for bzip2, gobmk, lbm and mcf benchmarks for multiple
inefficiencies. ex-bp has the highest tuning cost among all
algorithms as it searches the entire space of frequency settings
for Emin and the cluster. The Emin search itself takes up to 84%
of the total cost on average, as it involves estimating energy at
all settings before finding minimum of all the settings. The cost
of the Cluster search is low as it uses the already populated



Emin search Cluster search Transition latency

10 30 50 70 90 11
0

13
0

coscale + Emin

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

rl-ad

0
50

100
150
200
250
300
350

Tu
ni

ng
O

ve
rh

ea
d

(x
10

00
C

PU
cy

cl
es

)

10 30 50 70 90 11
0

13
0

coscale
(a) bzip2

Emin search Cluster search Transition latency

10 30 50 70 90 11
0

13
0

coscale + Emin

1.
0

1.
2

1.
3

1.
6

2.
0

2.
5

rl-ad

0
100
200
300
400
500
600

Tu
ni

ng
O

ve
rh

ea
d

(x
10

00
C

PU
cy

cl
es

)

10 30 50 70 90 11
0

13
0

coscale
(b) gobmk

Fig. 8: Tuning Overhead Compared to CoScale: rl-ad has 24% lower tuning overhead than CoScale across all SPEC benchmarks. While
for bzip2, rl-ad wins over CoScale, for gobmk, it performs better when compared fairly by including Emin search cost to CoScale.

ast
ar

bz
ip2

de
alI

I

go
bm

k

h2
64

ref

hm
merlbm lib

q. mcf
milc

na
md

om
ne

tpppe
rl.

po
vra

y
sje

ng
so

ple
x

sp
ec

.99
8

sp
ec

.99
9

−10
−5

0
5

10
15
20
25

In
cr

ea
se

in
E

xe
cu

tio
n

Ti
m

e(
%

)

ast
ar

bz
ip2

de
alI

I

go
bm

k

h2
64

ref

hm
merlbm lib

q. mcf
milc

na
md

om
ne

tpppe
rl.

po
vra

y
sje

ng
so

ple
x

sp
ec

.99
8

sp
ec

.99
9

−20
−15
−10
−5

0
5

10

E
ne

rg
y

Sa
vi

ng
s

(%
)

ex-bp
ex-ad, th=1%
ex-ad, th=3%
ex-ad, th=5%
rl-bp
rl-ad, th=1%
rl-ad, th=3%
rl-ad, th=5%

Fig. 9: Performance and Energy Compared to CoScale For Inefficiency of 1.3: rl-ad results in performance loss of less than 5% for most
of the benchmarks with an average of 2.8% across all SPEC benchmarks. Energy savings are up to 5% with an average of 1.5%.

energy surface during the Emin search. When the exhaustive
search is combined with adaptive select, ex-ad, the average
tuning cost decreases as adaptive select skips tuning if the
application has long stable phases. The decrease is a function
of the application. As shown in the figure, the reduction in
tuning cost of ex-ad compared to ex-bp is higher for bzip2, lbm
and mcf than for gobmk as these benchmarks have long stable
phases, while gobmk has rapidly changing CPU and memory
intensive phases. Relative search (rl-bp) significantly improves
tuning cost, 32% for bzip2 and 50% for gobmk compared to
ex-ad. However, it performs similar to ex-ad for lbm (with only
2% improvement in tuning cost), and has 20% higher tuning
cost for mcf. The higher tuning cost of best performing select
dominates the savings achieved by relative search increasing
the overall average tuning cost for mcf. Finally, relative search
combined with adaptive select (rl-ad) results in the lowest
tuning overhead among all the algorithms. rl-ad improves
tuning cost by as much as 46% on average compared to rl-bp
by both selectively tuning and reducing the search space.

Next, we compare the tuning cost of our best algorithm, rl-ad,
with that of CoScale’s algorithm—designed to select settings
that result in lowest energy consumption under performance
constraints. Figure 8 plots tuning cost of rl-ad and CoScale for
bzip2 and gobmk benchmarks. As shown in the Figure, tuning
cost of rl-ad for bzip2 is lower than CoScale by 32%, while
for gobmk the average cost of rl-ad is higher than CoScale
by 10%. Note that while our algorithms do two computations:
1) finding Emin and 2) searching the cluster, CoScale, as pub-
lished, only performs the later: searching for possible settings
that don’t violate the set performance constraints. Adaptive
selection reduces the average tuning cost of the algorithms per
application by selectively skipping tuning. For applications that
have rapidly changing phases, adaptive selection decides to run
the algorithm quite often in order to bound the performance
loss to set threshold, thereby results in higher tuning overhead
than CoScale for gobmk. However, the Emin search itself
takes 40% of the rl-ad tuning overhead for gobmk. Because
we had to perform an Emin search to properly use CoScale

by determining the performance bounds, it would be fair to
compare our tuning cost with that of CoScale with Emin search
cost included. We add the average Emin search cost to the
tuning overhead of CoScale and plot it for bzip2 and gobmk
in Figure 8. As we can see from the figure, rl-ad has lower
average tuning cost for gobmk compared to CoScale+Emin
cost by 22%. Overall our rl-ad algorithm has on average
24.3% lower tuning cost compared to just CoScale’s algorithm
across all SPEC benchmarks. Another important observation
from Figure 8 is that tuning cost of CoScale increases for
higher performance bounds as the algorithm always starts its
search from the highest frequencies. As application phases
don’t change sharply, by starting from the current settings,
tuning cost of our algorithms is independent of inefficiency
constraint and is only a function of application phases.

Performance and Energy: We plot the increase in execution
time of the applications compared to CoScale for an ineffi-
ciency budget of 1.3 in Figure 9(a). As CoScale chooses the
settings that perform within bounds, it never exceeds the set
performance loss. In the interest of reducing the tuning cost,
relative search stops as soon as it finds any setting under
given inefficiency budget and adaptive select skips tuning if
performance loss is within specified threshold, thereby loosing
performance. We observe that for most of the benchmarks the
performance loss for rl-ad is less than 5% and in a very few
cases goes up to 7% with an average of 2.8%. Tuning overhead
is included; therefore, ex-bp results in highest increase in
execution time due to it’s high tuning cost. Figure 9(b) plots
energy savings compared to CoScale. rl-ad saves up to 5%
energy with an average of 1.5% across all SPEC benchmarks.
We observed similar savings for other inefficiency budgets.

Achieved Inefficiency: Figure 10 plots inefficiency achieved
by the applications using our algorithms for the inefficiency
budget of 1.2. As shown in Figure 10(a), applications always
stay within the specified inefficiency budget using our algo-
rithms (As shown by negative difference in inefficiency), as the
optimal frequencies are chosen from the cluster which contains
only those settings that fall within given inefficiency budget.



bzip2 gobmk lbm libquantum mcf milc
(a) Without Tuning Overhead

−12
−10
−8
−6
−4
−2

0
2
4

In
ef

fic
ie

nc
y

D
iff

er
en

ce
(%

)

bzip2 gobmk lbm libquantum mcf milc
(b) With Tuning Overhead

−15
−10
−5

0
5

10
15

In
ef

fic
ie

nc
y

D
iff

er
en

ce
(%

) ex-bp
ex-ad, th=1%
ex-ad, th=3%
ex-ad, th=5%
rl-bp
rl-ad, th=1%
rl-ad, th=3%
rl-ad, th=5%

Fig. 10: Inefficiency Difference (%) for I = 1.2: rl-ad always stays within specified inefficiency budget.

Figure 10(b) plots combined inefficiency of applications and
algorithms. As we don’t include the cost of tuning while
selecting the frequency settings, ex-bp results in higher (upto
10%) than specified inefficiency budget due to its high tuning
overhead, while rl-ad always stays within specified inefficiency
budget (illustrated by inefficiency difference of less than zero).

V. CONCLUSION

Core DVFS when combined with DRAM frequency scaling
provides greater opportunities for energy savings by trading
off performance. Managing the frequency of both compo-
nents simultaneously requires a coordinated approach that
considers the cross-component affects of scaling one compo-
nent’s frequency on the other. We demonstrated how systems
working under performance constraints can’t be directly used
for systems operating under energy constraints and presented
a holistic approach that works under an energy constraint,
Inefficiency and selects the optimal frequencies staying under
the specified inefficiency budget.

Computing inefficiency is expensive and results in high tuning
cost if done with exhaustive search. Therefore we presented
relative and adaptive algorithms that reduce the tuning cost
with very little loss in performance. Our system is successful in
staying within specified inefficiency budget and our algorithms
have 24% lower tuning cost and save up to 5% energy
across all SPEC benchmarks compared to the search algorithm
proposed by CoScale.

VI. ACKNOWLEDGEMENT

This material is based on work partially supported by NSF
Awards CSR-1409014 and CSR-1409367. Any opinion, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

REFERENCES

[1] R. Z. Ayoub, U. Ogras, E. Gorbatov, Y. Jin, T. Kam, P. Diefenbaugh,
and T. Rosing, “Os-level power minimization under tight performance
constraints in general purpose systems,” in Proceedings of the 17th
IEEE/ACM international symposium on Low-power electronics and
design. IEEE Press, 2011, pp. 321–326.

[2] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and M. Martonosi,
“Phases: Duration Predictions and Applications to DVFS,” IEEE Micro,
2005.

[3] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu,
“Memory power management via dynamic voltage/frequency scaling,”
in Proceedings of the 8th ACM international conference on Autonomic
computing. ACM, 2011, pp. 31–40.

[4] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bian-
chini, “Coscale: Coordinating cpu and memory system dvfs in server
systems,” in The 45th Annual IEEE/ACM International Symposium on
Microarchitecture, 2012, 2012.

[5] M. Chen, X. Wang, and X. Li, “Coordinating processor and main
memory for efficientserver power control,” in Proceedings of the
international conference on Supercomputing. ACM, 2011, pp. 130–
140.

[6] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat, “Currentcy: a
unifying abstraction for expressing energy management policies,” in
Proceedings of the annual conference on USENIX Annual Technical
Conference. Berkeley, CA, USA: USENIX Association, 2003, pp. 4–4.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1247340.1247344

[7] S. M. Rumble, R. Stutsman, P. Levis, D. Mazieres, and N. Zeldovich,
“Apprehending joule thieves with cinder,” in Proceedings of the 1st
Annual ACM workshop on networking, systems, and applications for
mobile handhelds (MobiSys’10), August 2009.

[8] H. Zeng, X. Fan, C. S. Ellis, A. Lebeck, and A. Vahdat, “ECOSystem:
Managing Energy as a First Class Operating System Resource,” in
Proc. Architectural Support for Programming Languages and Operating
Systems (ASPLOS), San Jose, CA, October 2002.

[9] R. Begum, D. Werner, M. Hempstead, G. Prasad, and G. Challen,
“Energy-performance trade-offs on energy-constrained devices with
multi-component dvfs,” in Workload Characterization (IISWC), 2015
IEEE International Symposium on. IEEE, 2015, pp. 34–43.

[10] N. C. Nachiappan, P. Yedlapalli, N. Soundararajan, A. Sivasubrama-
niam, M. T. Kandemir, R. Iyer, and C. R. Das, “Domain knowledge
based energy management in handhelds,” in High Performance Com-
puter Architecture (HPCA), 2015 IEEE 21st International Symposium
on. IEEE, 2015, pp. 150–160.

[11] ARM, “Cortex-A9 Technical Reference Manual, Revision 4.” 2012.
[12] Intel, “Intel Architecture Software Developer’s Manual, Volume 3:

System Programming Guide,” 2009.
[13] Micron, “Calculating Memory System Power for LPDDR2, May 2013.”
[14] Pandaboard, http://pandaboard.org/content/platform.
[15] M. Floyd, M. Allen-Ware, K. Rajamani, B. Brock, C. Lefurgy, A. Drake,

L. Pesantez, T. Gloekler, J. Tierno, P. Bose, and A. Buyuktosunoglu,
“Introducing the adaptive energy management features of the power7
chip,” Micro, IEEE, vol. 31, no. 2, pp. 60 –75, march-april 2011.

[16] S. Narendra, V. De, S. Borkar, D. Antoniadis, and A. P. Chandrakasan,
“Full-chip sub-threshold leakage power prediction model for sub-0.18
μm cmos,” in Proc. ISLPED, Aug 2002.

[17] G. Challen and M. Hempstead, “The case for power-agile computing,”
in Proc. 13th Workshop on Hot Topics in Operating Systems (HotOS-
XIII), May 2011.

[18] Micron, “16Gb:x8,LPDDR3 SDRAM, 2014.”
[19] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM

SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.
[20] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,

A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2024716.2024718


