
 

 

Jouler: A Policy Framework Enabling
Effective and Flexible Smartphone Energy Management

Anudipa Maiti, Yihong Chen and Geoffrey Challen

University at Buffalo
{anudipam,ychen78,challen}@buffalo.edu

Abstract. Smartphone energy management is a complex challenge. Consider-
able energy-related variation exists between devices, apps, and users; and while
over-allocating energy can strand the user with an empty battery, over-conserving
energy can unnecessarily degrade performance. But despite this complexity, cur-
rent smartphone platforms include ”one-size-fits-all” energy management poli-
cies that cannot satisfy the diverse needs of all users. To address this problem we
present Jouler, a framework enabling effective and flexible smartphone energy
management by cleanly separating energy control mechanisms from management
policies. Jouler provides both imperative mechanisms that can control all apps,
and cooperative mechanisms that allow modified apps to adapt to the user’s en-
ergy management goals. We have implemented Jouler for Android and used it to
provide three new energy management policies to 203 smartphone users. Results
from our deployment indicate that users appreciate more flexible smartphone en-
ergy management and that Jouler policies can help users achieve their energy
management goals.

Key words: Smartphone energy management; Smartphone platforms

1 Introduction

Effective smartphone energy management requires responding to an enormous amount
of diversity. Devices have different battery capacities, users have different battery life-
time expectations determined by their charging habits, and apps consume1 different
amounts of energy depending on what they do and how well they are developed. De-
spite these differences, today’s smartphone platforms manage energy using “one-size-
fits-all” policies. For some users, the result is battery lifetimes that are too short, and
this has remained a top complaint about smartphones [15, 1]. For other users, the re-
sult is battery lifetimes that are unnecessarily long and degraded performance due to
unneeded energy conservation.

Recent research efforts have succeeded in improving smartphone energy measure-
ment [4, 20], characterization [16] and modeling [5, 12, 24, 6]. They have also provided
new energy control hardware [9, 10] and software [17, 21] mechanisms. However, more
accurate measurements and more effective mechanisms will not improve smartphone

1 To avoid confusion between device usage and energy usage, we use consumption to denote
energy usage and usage to denote user-device interaction.

http://blue.cse.buffalo.edu


2 Anudipa Maiti, Yihong Chen and Geoffrey Challen

energy management if they are not joined with a range of different policies reflecting
the differences between devices, users, and apps.

This paper introduces Jouler, a system enabling effective and flexible smartphone
energy management. Jouler delegates the energy management policy decisions cur-
rently embedded in smartphone platforms to unprivileged apps called energy managers.
Energy managers use Jouler’s interface to access energy measurements and energy con-
trol mechanisms. Because energy managers encapsulate energy management policies
inside normal smartphone apps, they are easy for developers to create and distribute,
and for users to find, try, and rate. They can also interact with the user, monitor the
environment, and access all other capabilities provided to apps.

To enable flexible policies, Jouler provides energy managers with a variety of infor-
mation about running apps. Energy models provide overall and per-app energy con-
sumption measurements, broken down by component and between foreground and
background operation. Jouler also provides information about how apps use the de-
vice, such as the amount of time they spend in the foreground and their usage of the
network, output devices, and sensors.

To enable effective policies, Jouler provides energy managers with both energy
control carrots (cooperative mechanisms) and sticks (imperative mechanisms). Jouler’s
cooperative mechanisms enable cooperation with modified apps that can adapt their
own energy consumption when needed, making existing energy-aware apps simpler
and more effective by allowing them to offload energy management policy decisions
to the energy manager. When cooperation fails, energy managers can utilize imperative
mechanisms—such as per-app processor frequency throttling—to force unmodified or
uncooperative apps to adjust their energy consumption. Imperative mechanisms also
help encourage developers to modify their apps to take advantage of Jouler’s coopera-
tive mechanisms.

After motivating our approach using results from a detailed energy consumption
measurement study, we present Jouler’s design and several potential energy managers.
We then evaluate an Android implementation of Jouler in two ways. First, we demon-
strate the effectiveness of Jouler’s imperative and cooperative control mechanisms on
a benchmark app. Second, we present the results of deploying Jouler and three energy
managers to 203 PHONELAB participants. Our results show that Jouler is effective and
that users appreciate more flexible energy management.

2 Motivation

Jouler’s design is motivated by the results of two IRB-approved measurement studies
performed on the PHONELAB public smartphone platform testbed [13] located at the
University at Buffalo. PHONELAB consists of several hundred students, faculty, and
staff who carry instrumented Android smartphones. PHONELAB participants are bal-
anced between genders and distributed across ages, and thus are representative of the
broader smartphone user population. Our study both (1) logged battery level changes for
105 users for 6 months and (2) modified the Android platform to record more detailed
per-app energy consumption statistics for 107 users for 2 months. Because our results
largely match a previous measurement study [3], we summarize them only briefly:



Jouler: A Policy Framework 3

User
0

10

20

30

40

50

60

70

80

Po
w

er
(%

pe
rh

ou
r)

(a)

0 500 1000 1500 2000
Power (mW)

Kik Messenger
Android Phone

Snapchat
Android Messaging

WhatsApp Messenger
GO SMS Pro

Instagram
Maps

Android Browser
Viber

Android Gallery
Android Mail

Android Clock
Chrome Browser

Tumblr
Facebook

Gmail
Google Voice

Google Search
Twitter

A
pp

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Power (mW)

Android Messaging (Low)
Android Messaging (OK)

Facebook (Low)
Facebook (OK)

Android Phone (Low)
Android Phone (OK)

Android Browser (Low)
Android Browser (OK)

WhatsApp Messenger (Low)
WhatsApp Messenger (OK)

Gmail (Low)
Gmail (OK)

Android Gallery (Low)
Android Gallery (OK)
Kik Messenger (Low)
Kik Messenger (OK)
Google Search (Low)
Google Search (OK)
Android Mail (Low)
Android Mail (OK)

A
pp

(c)

Fig. 1: Aspects of Energy Consumption Diversity. In all plots the white line shows
the median, shaded bars show upper and lower quartiles, whiskers are positioned at 1.5
times the inner quartile range, and small dots show outliers. Plots show large amounts
of interuser (a) and interapp (b) variation, and that apps are not successfully adapting to
low battery conditions (c).

– Interuser variation. Figure 1a shows per-user distributions of discharging rates
(in percent per hour) for all discharging sessions in the six-month trace. A factor of
four separates the fastest and slowest users, and a great deal of intrauser variation
is visible.

– Interapp variation. Figure 1b shows user distributions of per-app energy con-
sumption for the top 20 apps used by PHONELAB users. Because many apps in-
clude background services, we compute power by dividing each app’s total en-
ergy consumption—including both background and foreground—by its foreground
time. The data shows a large amount of interapp variation, and, for many apps, a
great deal of interuser variation.

– Apps don’t adapt. To investigate whether apps adapt to low battery levels, we
separate measured app energy consumption into low battery (< 10%) and OK bat-
tery states and compared these two distributions for the top 10 apps. Because we
consider it reasonable for apps to maintain interactive performance even when the
battery is low, we only examined background energy consumption for this compari-
son. Figure 1c shows that in most cases the distributions are very similar, indicating
that most apps are not adapting to low battery levels.



4 Anudipa Maiti, Yihong Chen and Geoffrey Challen

Energy
Manager

●Foreground time
●Screen refresh rate
●Audio output rate
●UI event rate

App Usage Energy Consumption

●Per component
●Background and
foreground

●Adaptive timers
●Delayed tasks
●Adaptive settings
●Per-app adaptation

Cooperative

● CPU speed reduction
● Bandwidth throttling
● Brightness reduction
● Priority adjustment
● Component hiding

Imperative

Inputs

Policy

Mechanisms

Fig. 2: The Jouler Energy Management Framework. Jouler provides energy man-
agers with the information needed to make energy management policy decisions and
the mechanisms needed to enforce them.

In summary, analysis of our two datasets confirms the well-known energy consump-
tion differences between users and apps, and motivates the need for more flexible smart-
phone energy management to respond to this diversity.

3 Design

We continue by describing Jouler’s design. Jouler consists of two parts: unprivileged
apps called energy managers that implement energy management policies, and a privi-
leged platform service providing an interface to the information and mechanisms used
by energy managers to accomplish their goals. We describe each in turn.

3.1 Energy Managers

Enabling flexible energy management requires allowing policies to be easily created and
distributed by developers and easily installed, configured, and evaluated by end users.
To accomplish this, Jouler utilizes the same solution that has worked so successfully
for millions of smartphone apps: app marketplaces like the Google Play Store. Jouler
removes energy management policies from within the platform where they cannot be
altered and replaces them with category of apps called energy managers implementing
a variety of different energy management policies. As shown in Figure 2, energy man-
agers use Jouler’s interface to access app usage and energy consumption statistics and
control per-app and overall device energy consumption.

Because Jouler energy managers are just normal smartphone apps, we have similar
expectations for their development and use. We expect a small group of app developers
to develop a variety of energy managers to be used by millions of smartphone users. We
expect both good, user-friendly, effective as well as complicated, ineffective, malicious
energy managers to co-exist. We also expect users to try different energy managers
before deciding on one or more making few energy managers more popular than others.



Jouler: A Policy Framework 5

Energy managers are only distinguished from other smartphone apps in two ways.
First, they must request and be granted permission to use Jouler’s interface. During
installation, energy managers request permission to access these features using the plat-
form’s standard permission dialog. Second, to prevent multiple energy managers from
interfering with each other, Jouler enforces that only one energy manager can be active
at any point in time—even if the user has installed several.

To continue, we provide two vignettes presenting energy managers first from the
perspective of an energy manager developer and second from that of an end user.

Energy manager developer experience. Alice is an experienced app developer. From
personal experience she noticed that while traveling a user is most likely to decrease
smartphone usage due to limited charging opportunities to avoid running out of energy
too quickly. So she developed a Jouler energy manager that prompts an user to enter her
travel plans when it detects her arriving at an airport. It uses her predicted arrival time
to determine an appropriate lifetime target, while also prioritizing energy consumption
by travel-related apps such as navigational aids. Once Alice is satisfied with her new
energy manager, she publishes it to the Google Play Store for other travelers to try.

End user experience Dave and Bob are coworkers who travel together frequently.
Dave is a heavy smartphone user and frequent charger and normally uses an energy
manager that adapts to his charging habits to provide high performance. Bob, on the
other hand, is a light user and forgetful charger and normally uses an energy manager
that meters out energy to meet his target lifetime and aggressively reminds him to charge
when his battery is low.

Both users, however, have been frustrated by their smartphones’ energy consump-
tion when traveling. Searching on the Google Play Store, Bob locates Alice’s energy
manager which has become popular with travelers. On their next trip, he tries it and
finds it effective enough to recommend to Dave, who begins to use it regularly as well.
While traveling they enable Alice’s energy manager, and when they return home they
again enable their normal energy managers.

3.2 Energy Manager Inputs

To enable a variety of effective energy management policies, Jouler provides energy
managers with as much information about app usage and energy consumption as pos-
sible. To measure energy consumption, Jouler tracks total system and per-app energy
consumption, breakdowns of energy consumption between device components (proces-
sor, network interfaces, screen, GPS), and breakdowns of energy consumption between
screen foreground, audio foreground, and background sessions. While some of this in-
formation can be obtained by Android apps through Java introspection, this approach
is brittle and not officially supported. Jouler’s interface standardizes access to detailed
energy consumption information.

To measure interaction, Jouler tracks the number of and length of each app fore-
ground session; rates of click, type, and swipe interactions; screen redraw and audio
sampling rates; and notification delivery and click times. This collection of informa-
tion is sufficient to support the variety of energy managers described later, but Jouler
may eventually provide more information if it proves useful to promising new energy
management approaches.



6 Anudipa Maiti, Yihong Chen and Geoffrey Challen

3.3 Cooperative Mechanisms

To enable effective energy management policies, Jouler provides energy managers with
two types of mechanisms: cooperative mechanisms that rely on collaboration with apps,
and imperative mechanisms that do not. Cooperative mechanisms allow apps to guide
the process of aligning their own energy consumption with the energy manager’s and
user’s goals. Jouler’s collaborative mechanisms combine a simple set of signals with a
library of useful energy management primitives based on common app design patterns.

However, imperative mechanisms can always be used to control the energy con-
sumption of apps that either have not been modified to use Jouler or are not cooperating
effectively. As a result, no changes to existing apps are required to use Jouler. In ad-
dition, because apps have no control over the imperative mechanisms applied to them
by the energy manager, imperative mechanisms also serve to incentivize developers to
modify their apps to use Jouler’s cooperative mechanisms.

Cooperative signals Jouler’s cooperative mechanisms are driven by three simple sig-
nals that energy managers can send to apps:

– Reduce indicates the app must reduce its energy consumption. If it does not, the
energy manager may apply an imperative mechanism. This signal is also sent when-
ever an imperative mechanism is applied.

– OK indicates that the app’s energy consumption is acceptable to the energy manager.
– Increase indicates that the app can increase its energy consumption. This sig-

nal can be sent when an imperative mechanism is removed or the device begins
charging.

So a cooperative app should immediately reduce its energy consumption on receiv-
ing single or repeated Reduce signal. Unmodified apps that have chosen not to cooperate
with the energy manager will ignore these signals, and it is safe for any app to do so—
except for the fact that cooperative mechanism will be followed by imperative ones if
the app’s energy consumption remains at odds with the energy manager’s policy. Once
we gain more experience with Jouler, we may consider delivering more information
along with cooperative signals—such as the apps’ current energy consumption rate and
the energy manager’s target—if cooperative apps find additional information useful.

Cooperative apps may connect cooperative signals to app-specific choices affecting
energy consumption. For example, an email client may reduce the number of folders
that are periodically synchronized and a browser may request lower-quality content.
Because Jouler’s cooperative signals directly reflect a user’s energy manager’s policies,
they are much more powerful than ad-hoc triggers—such as low battery level—at en-
abling app energy awareness. A user may want an infrequently-used app to always limit
its energy consumption and a frequently-used app to never limit its energy consumption,
regardless of the current battery level.

Cooperative library Apps are free to respond to cooperative signals directly, but there
are also a set of energy-aware design patterns common across many apps. To further
encourage apps to collaborate with the energy manager, Jouler includes a library of
cooperative mechanisms driven by its cooperative signals.



Jouler: A Policy Framework 7

– Energy-adaptive timers. Background operations performed by smartphone apps
are often driven by timers. For example, an email client may periodically contact
a server to check for new mail. Unfortunately, the energy consumption resulting
from a static rate may not be appropriate for all users or in all scenarios.
Jouler provides energy-adaptive timers that adjust their firing rate in response to
cooperative signals. Apps configure a maximum and minimum firing rate and step
size when initializing the energy-adaptive timer. When they receive the Reduce
signal, energy-adaptive timers reduce their firing rate by one step until they reach
the minimum; when they receive the Increase signal, they increase their firing
rate by one step until they reach the maximum.
Using adaptive timers is easy. Developers can simply replace calls to existing timer
interfaces with the new adaptive timers provided by Jouler.

– Energy-delayed tasks. Some tasks performed by smartphone apps are delay tol-
erant and can be deferred until conditions are favorable. For example, a music
client may only download requested music to add to a local cache when an energy-
efficient Wifi network is available and not over 4G. Unfortunately, it is difficult for
apps to determine under what conditions tasks should be delayed.
Jouler’s provides energy-delayed tasks that use cooperative signals to determine
when to run. Apps register an energy-delayed task with a maximum delay. The task
will not run until the app receives the OK or Increase signal or the maximum
delay is reached.
Using energy-delayed tasks is also easy. Assuming that developers already have
their task in a separate module so that it can be deferred, they need only to wrap the
task in the new energy-delayed task object provided by Jouler.

We do not claim either of these mechanisms to be novel, and Jouler’s cooperative
library borrows freely from previous systems, such as Eon, which also adjusted timer
rates to control sensor network node energy consumption [19]. However, to our knowl-
edge Jouler is the first system to integrate these approaches into a smartphone energy
management framework. The cooperative library also allows apps to factor out compli-
cated and error-prone decision making concerning when to conserve energy, and instead
focus on responding effectively to signals issued by the energy manager.

3.4 Imperative Mechanisms

Jouler’s cooperative features encourage apps to manage their own energy consumption.
However, there are many cases where cooperation will fail. First, as Jouler is intro-
duced, most apps will not have been modified to cooperate with the energy manager.
Second, some apps may not want to cooperate, either to selfishly gain performance or to
maliciously waste energy. Finally, an app’s attempts to cooperate may be insufficient to
meet the energy manager’s and user’s goals. These limitations require that Jouler pro-
vide imperative mechanisms that force—rather than ask—apps to reduce their energy
consumption. Imperative mechanisms both ensure that energy managers can control all
apps while also encouraging apps to cooperate with the energy manager to manage their
energy consumption more intelligently.

Jouler ties all imperative mechanisms to cooperative signals. Any time an energy
manager applies an imperative mechanism to an app it is also sent the Reduce signal.



8 Anudipa Maiti, Yihong Chen and Geoffrey Challen

When the imperative mechanism is removed, the app is sent the Increase signal—
but only after a delay to avoid feedback loops. Coupling cooperative signals to imper-
ative mechanisms allows cooperative apps to continue to attempt to adjust their energy
consumption while imperative mechanisms are applied.

To enable effective energy management policies, Jouler provides energy managers
access to as many imperative mechanisms as possible to limit overall and per-app en-
ergy consumption. Most of these mechanisms other than screen brightness cannot be
accessed by unprivileged apps in general.

Jouler currently provides energy managers with the following imperative mecha-
nisms reflecting energy-saving features available on current smartphones:

– CPU tuning. Energy managers can change CPU governors and adjust the CPU
frequency of dynamic voltage and frequency scaled (DVFS) processors by selecting
either performance-boosting higher frequency or energy-efficient lower frequency.

– App priorities. Energy managers can set app scheduling priorities which affect
the relative performance of multiple running apps. For example, an unthrottled app
may achieve equivalent performance at a lower CPU frequency if its priority is
increased relative to a throttled app.

– Bandwidth throttling. Energy managers can control per-app and global usage of
available network interfaces.

– Brightness adjustment. Energy managers can control per-app and global screen
brightness.

To allow energy managers to apply per-app policies, Jouler delivers a signal to the
energy manager each time any app comes to the foreground. Energy managers can use
this signal to adjust global settings such as the CPU frequency on a per-app basis while
also enforcing background settings. Energy managers may also want to adjust per-app
settings such as priorities to distinguish between foreground and background operation.

In some cases imperative mechanisms may have varied effects on apps. For exam-
ple, slowing the CPU frequency may cause certain apps to consume more energy due
to other components being active for a longer period of time. These complicated app
interactions argue for the increased policy flexibility provided by Jouler, particularly
given that default platform policies frequently ignore these complexities.

Intentionally omitted imperative mechanisms. Because Jouler’s goal is to enable
flexible and effective energy management of apps that users want to continue using, it
does not allow energy managers to uninstall apps or kill app services, which can cause
apps to misbehave. Jouler energy managers are free to suggest these actions to users if
they could be beneficial.

3.5 Privacy Concerns

To manage energy effectively, energy managers have access to information about the
apps running on their smartphone that some users may prefer not to reveal. Currently,
Jouler uses a single permission mechanism to inform users of this risk during instal-
lation, but we are exploring more fine-grained permissions that could allow users to
anonymize the app information provided to energy managers. This would affect poli-
cies that rely on identifying apps, but might alleviate some privacy concerns.



Jouler: A Policy Framework 9

4 Example Energy Managers

Jouler is designed to allow flexible and innovative energy management policies to be
implemented as energy managers. In this section, we describe few such policies.

Lifetime Targeting. Many previous approaches to energy management focus on meet-
ing a target lifetime. By monitoring energy consumption and the remaining battery
level, the energy manager can determine whether the user’s lifetime target will be met.
If their smartphone may run out of energy too soon, the energy manager can decide to
use Jouler mechanisms in a way that reduces energy consumption with minimal per-
formance degradation. On the other hand, if their smartphone may run for hours more
than the expected target lifetime, due to less usage or short term unexpected charging
sessions in between, then the manager can use Jouler mechanisms to boost performance
for better user experience.

While lifetime targeting is conceptually simple, dynamically deciding the trade off
between conserving energy and boosting performance is difficult. It is also hard to pre-
dict hours before if the target can be met or not due to possible fluctuations in app usage.
Although we are not sure what lifetime targeting approach will prove most effective, by
enabling the distribution and testing of new approaches Jouler accelerates the process
of developing effective solutions.

App Based Throttling. Smartphone users generally install a large number of apps
over the time they use their device, some of which they use regularly and are clear
favorites—such as a default email client, browser, messaging app and social networking
client. There are also those apps which a user has installed but has hardly used or would
not care if there is a slight performance degradation to reduce energy consumption. An
energy manager can allocate a major chunk of energy to the regular apps and monitor
the energy consumed by most favorite apps and least favorite apps. If the non-favorite
apps consume more energy than desired, the energy manager can start throttling them
to allow the user to access the regular apps for longer period. By observing users’ app
usage over a period of time, the energy manager may be able to suggest what apps
should be on their list of favorites.

Reward Efficient Content Delivery. To determine appropriate per-user settings the
energy manager needs better understanding of app energy consumption. A common
challenge faced by many energy management approaches is distinguishing between
two apps: one that uses a great deal of energy because it is poorly written, and a sec-
ond that inherently needs a great deal of energy to function properly. Without more
information about what the apps are doing, these two very different apps are indistin-
guishable. Moreover app background energy consumption varies widely between apps,
and between the same app used by different users. Whether legitimate or not, the vari-
ation in background energy consumption weakens the connection between how much
the smartphone is used and how much energy it consumes.

For this reason, Jouler provides energy managers with app usage and interaction
information. An energy manager could combine energy consumption with the amount
of data delivered through the screen and audio port to determine how efficiently the



10 Anudipa Maiti, Yihong Chen and Geoffrey Challen

app is delivering content to the user. In the example above, this would allow the energy
manager to distinguish between a streaming video client (inherently-high consumption)
and a poorly-written chat client (buggy consumption). This will also help the manager
to determine whether the energy consumed for background work is required or is a
waste. We anticipate that the Jouler framework will lead to more intelligent energy
management policies that observe a variety of aspects of app and user behavior.

5 Implementation

We have implemented the design, we just discussed, by modifying the Android Open
Source Platform (AOSP) version 4.4.4 named KitKat. The detailed information about
app usage and energy consumption are collected by a lightweight privileged service
JoulerPolicyService running in the platform from boot time. This information
includes overall, per-app, per-component, foreground and background breakdown of
usage and energy consumption. These inputs can be accessed by the energy managers
through the custom apis JoulerStatistics and JoulerPolicy. The later api
also provides an interface for using all the imperative mechanisms discussed in Jouler
design. For example, AOSP in LG Nexus 5 uses the online governor as a default
CPU governor which jumps between low and high CPU frequencies based on predeter-
mined workload thresholds. Using Jouler, an energy manager, if it chooses, can select
the userspace governor and set the highest frequency to boost performance of a
heavyweight app which is also a favorite of the user. But in order to access Jouler’s
framework, the energy manager apps need to use the new CAN MANAGE ENERGY an-
droid permission. For stability reasons, Jouler allows only one energy manager to run
at any given time even if multiple energy managers are installed in a single device.

The cooperative signals and mechanisms are also implemented in a manner that is
intuitive and easy-to-use for existing community of app developers. The easiest way
to send signals in an Android environment is to broadcast intents. So, we defined a
new intent ACTION ENERGY ALERT having three separate lists of package names of
installed apps, each list corresponds to apps who need to reduce energy consumption,
or apps who are doing okay or apps who can boost their performance as they are below
the threshold determined by a particular energy manager. Cooperating apps only have
to register to listen to this broadcast intent and decide whether they should reduce their
energy consumption or not. For other cooperative mechanisms like adaptive timers, we
have stayed true to the current AlarmManager implementation in Android. We added a
new setAdaptive method to the existing android.app.AlarmManager that is similar
to existing methods like setInexactRepeating but accepts an extra input to determine the
longest deadline till which the work can be delayed if needed. On the other hand the
wrapper for delayed task is found in the Jouler api we have mentioned earlier.

Overall our experience of implementing Android Jouler suggests that it should be
straightforward to implement Jouler for other smartphone platforms, allowing cross-
platform distribution of effective energy management policies. Jouler’s cooperative li-
brary will need to be reimplemented, but the service mainly exposes statistics and con-
trol mechanisms provided by operating systems for decades. However, without access
to sources for iOS or Windows Mobile we can only speculate about the development
burden on these other smartphone platforms.



Jouler: A Policy Framework 11

5.1 Energy Manager Implementation

We implemented and distributed three simple and straightforward energy managers:

– The Favorites Manager allows users to select a list of favorite apps. Periodically,
it compares the total energy consumption of the favorite apps and that of the other
apps. If the later is higher, then the energy manager restricts network usage by
the non-favorite apps when they run in the background and reduces brightness to
reduce screen energy consumption when they run in the foreground.

– The Blacklist Manager is identical to the Favorites manager except that it asks
users to choose the apps they like the least. Accordingly, it tries to reduce energy
consumption by the blacklisted apps when they run in the screen foreground or
background.

– The Lifetime Manager attempts to achieve at least the target lifetime hours con-
figured by the user. With every alternate battery level drop, the manager compares
the current battery discharge rate with the expected discharge rate. Accordingly,
the manager gradually throttles the CPU, app priorities, network usage and screen
brightness. If it is still unable to reach the target, it notifies the user how many
hours left before the device runs out of energy. Currently the energy manager does
nothing if the achieved lifetime is much more than what the user has asked for.

6 Evaluation

Our evaluation of the Android prototype demonstrates that Jouler provides both effec-
tive and flexible energy management policies. We evaluate Jouler in two steps. First
we use energy benchmarks to show that Jouler’s mechanisms are effective. Second, we
perform a ten day deployment of Jouler’s platform modifications and of three simple
but different energy managers on the PHONELAB testbed.

6.1 Energy Benchmark

First, we wanted to test if Jouler’s privileged system service, running continuously in
the platform to collect detailed app usage and energy consumption information, causes
any overhead. We fully charged two LG Nexus 5 smartphones, flashed a clean Android
build on one of them and flashed an image with Jouler modifications on the other. We
kept these phones unplugged with display screen off for 8 hours. The same battery
level drop for both phones assured us that there is no perceptible overhead for Jouler.
Next, we wrote a simple Android energy benchmark which is configurable to hog the
processor and network either continuously in the screen foreground or periodically in
the background. We tested the imperative mechanisms using this benchmark and some
of those results are presented in this section. To test the cooperative mechanisms, we
wrote one client app which uses both adaptive timer and energy delayed task wrappers
to cooperate with our simple energy manager which can send Reduce, OK and Increase
signals to the client app.



12 Anudipa Maiti, Yihong Chen and Geoffrey Challen

0 50 100 150 200

C
ur

re
nt

(m
A

)

CPU Hog Application

0 50 100 150 200
Time(s)

C
ur

re
nt

(m
A

)

Network Hog Application

(a) Effect of CPU Throttling.

0 100 200 300 400 500

C
ur

re
nt

(m
A

)

Adaptive Timer

0 20 40 60 80 100 120 140
Time (s)

C
ur

re
nt

(m
A

)

Energy Delayed Task

(b) Controlling Cooperative Apps.

0 5 10 15 20 25 30 35 40
Time (minutes)

−0.004

−0.002

0.000

0.002

0.004

0.006

0.008

0.010

D
at

a
E

ne
rg

y

Default Policy
Bandwidth Throttle Policy

(c) Effect of Bandwidth Throttling.
5 10 15 20 25 30

Time (minutes)

C
PU

E
ne

rg
y

(m
A

-m
s)

Changing Priorities

(d) Effect of Priority Adjustment.
Fig. 3: Effects of few Jouler Mechanisms on Energy

6.2 Jouler Mechanisms

To verify that Jouler’s mechanisms were having the intended effect on our benchmark,
we measured the current output of a Samsung Galaxy Nexus smartphone using a Mon-
soon Power Monitor [2]. Figure 3a shows the effect of reducing the processor frequency
in steps when the benchmark is hogging both the CPU and network. As expected, CPU
throttling reduces the power consumption of both hogs.

Figure 3d shows the effect of adjusting the Linux priorities of four instances of our
energy benchmark running as CPU hogs and competing together for the processor. As
the priorities of two hogs are raised—the yellow hog to the highest priority and the red
hog to an intermediate level—their share increases, and the shares of the two other hogs
are decreased as their priorities are lowered.

It is important that Jouler’s imperative mechanisms do not force existing, non-
cooperative apps to misbehave. In a Nexus 5 with pre-installed apps, we ran a whitelist
energy manager that throttles bandwidth of all non-favorite apps running in the screen
background. Figure 3c shows that bandwidth throttling saves power consumption by
limiting Gmail background energy consumption. During the experiment, we verified
that Gmail continued to behave normally and did not crash, confirming our expectation
that well-written apps can handle resource limitations.

Our evaluation of Jouler’s cooperative mechanisms is shown in Figure 3b. The
power monitor output confirms that Jouler’s cooperative mechanisms work as expected,
slowing the energy-aware timer and stopping energy-delayed tasks when receiving the
Reduce signal and restarting energy-delayed tasks when receiving the Increase signal.

6.3 Deployment

Our final step of evaluation consists of distributing platform modifications for imple-
menting Jouler and an integrated app which provides a selection of energy managers



Jouler: A Policy Framework 13

Preferred Energy Manager Users
Lifetime Energy Manager 44
Favorites Energy Manager 31
Blacklist Energy Manager 10
Default Android Energy Manager 88

Table 1: Energy Managers preferred by Users.

Longer Same Shorter
Users

10

20

30

40

50

L
ife

tim
e

H
ou

rs

Requested Lifetime
Achieved Lifetime

Fig. 4: Lifetime Energy Manager Comparison. The red line shows the median while
the upper and the lower edges of each box shows upper and lower quartiles of the
expected lifetime hours distribution for each user. The different colored boxes labeled
as longer, same and shorter signify users requesting lifetime hours greater than, equal to
or slightly less than and much lesser than the median respectively. This analysis aims
to compare the expected, requested and achieved lifetimes for each user.

to the participants of the PHONELAB testbed as an over-the-air update. The integrated
app offers 4 choices to users - Lifetime Energy Manager, Favorites Energy Manager,
Blacklist Energy Manager and No Energy Manager. The last choice allows users to
continue using or go back to the default Android energy management. These energy
managers are chosen because they are simple to use and understand. Users can also
switch between energy managers multiple times. We did not advertise or try to influ-
ence the testbed participants to use the app or configure it in a particular way. This is
done to evaluate if the energy managers are intuitive and easy to understand and use.
203 participants received the update and 173 participants access the app at least once.
Table 1 shows the breakdown of users who used one energy manager for the longest
period during the experiment lifetime. After 10 days a short survey was distributed to
collect their overall impressions of the Jouler system. PHONELAB’s built-in platform
instrumentation and logging capabilities were used to collect data generated by the plat-
form and energy managers. The entire experiment was reviewed and approved by the
University at Buffalo’s Institutional Review Board (IRB).

Lifetime Energy Manager. To understand the lifetime expectations of different users,
first we need to know for how long can a device stay off the plug on any given day. We
have recorded battery related details for all PHONELAB participants since September
2014. Using this data, we computed the average battery drain per hour for each user and
the expected lifetime hours based on that rate. In Figure 4 for all the participants who
selected the lifetime manager we show the distribution of expected lifetime hours. Users
did not always request lifetime hours close to what is expected of their device. So we



14 Anudipa Maiti, Yihong Chen and Geoffrey Challen

Rank App Name Occurrences
1 Google Play Newsstand 10
1 Google Play Books 10
2 Google Play Games 9
2 Android Movie Studio 9
3 Google Play Music 8
3 Google Wallet 8
4 Superuser 7
5 Earth 6
5 News & Weather 6
5 Google 6

(a) Most Common Blacklisted Apps.

Rank App Name Occurrences
1 Chrome 17
2 Facebook 12
2 Hangouts 12
2 Dialer 12
2 Camera 12
3 Youtube 11
3 Maps 11
4 Gallery 10
4 Clock 10
5 Gmail 9

(b) Most Common Favorite Apps.

Table 2: Configuring Blacklist and Favorites Energy Managers.

group the users based on whether the requested lifetime hours is shorter, longer or equal
to the lifetime hours they usually experience. It needs to be pointed out that the energy
manager has a constraint that does not allow users to select a lifetime goal beyond 24
hours. The energy manager failed badly for most of the users in the first group, who
requested a comparatively longer lifetime. Thus, our Lifetime energy manager is not a
good fit for users running heavyweight apps frequently or having heavy device usage
because this manager cannot decrease the discharge rate by only following global poli-
cies. Rather Blacklist or Favorites energy manager can be a better choice in these cases.
The energy manager fared slightly better for the group of users who requested similar
lifetime hours. In the last group, a large number of users requested a shorter lifetime
either due to the constraint imposed by the energy manager or because they do not care
about very long lifetime hours. In these cases, a good energy management policy will
be one which can boost performance instead of being too conservative about saving
energy while reaching the lifetime target. Though our energy manager did not fare well
across all categories of users, it provided us with interesting insights to improve lifetime
management policies in future.

Blacklist and Favorites Energy Manager. The other two energy managers we dis-
tributed are app based. At the beginning, users, who selected one of these managers, are
prompted to choose one or more apps to put in the blacklist or whitelist for Blacklist
and Favorites energy managers respectively. In Table 2 we found pre-installed google
apps to be most commonly blacklisted. On the other hand, users were more likely to
select browsers and social media apps as favorites.

Survey. Continuing with the evaluation, we distributed a short survey among the par-
ticipants. Our goal is to determine if users are interested in using energy manager apps
in the future. We asked users if they found understanding and configuring our energy
managers easy and if they appreciated having more control over how energy is man-
aged in their devices. We asked users to list which energy manager they preferred the
most and to state problems they faced while using any of the energy managers. We
also asked for any suggestion they might have to improve our energy managers. 88 par-
ticipants responded, 80% of whom appreciated having this extra control over energy



Jouler: A Policy Framework 15

management. But 25% of the participants reported facing problems while the energy
manager was running. The most common complaint was about the harsh decrease in the
display screen’s brightness by the energy managers which hampered user-experience.
Some users did not find the energy managers to be perceptibly effective. Many users
also pointed out lack of instructions from our end to be a key factor for not knowing
how to use the app, which might be the reason why a majority of the participants did
not use any of the three energy managers. Some also suggested instead of their having
to select their favorite apps manually, it would be more helpful if the energy manager
could internally decide which are the preferred apps from usage related information.

7 Related Work

We divide related work into projects related to Jouler’s inputs, its mechanisms, its poli-
cies, before briefly discussing other Android apps that attempt to help users manage
their smartphone’s energy consumption. While some portions of Jouler draw on similar
work in the sensor network and mobile systems areas, to our knowledge no existing
system provides the capabilities and flexibility of Jouler.

Jouler Inputs Effective energy management relies on accurate energy measurement
and attribution. Previous tools such as PowerTutor [24] have demonstrated model-
driven approaches to determining per-component and per-app energy usage, with this
approach being largely replicated by Android’s internal Fuel Gauge component. Be-
cause many modeling approaches struggle with limited visibility of aggregate energy
consumption, VEdge [20] uses only measurement of the battery voltage to infer current
draw and therefore energy consumption. Other recent projects have provided improved
approaches incorporating temporal variation in exogenous factors such as network sig-
nal strength into models to make them more accurate [5]. Jouler’s energy managers will
benefit from future improvements in this area.

Jouler Mechanisms Multiple systems have attempted to establish new operating sys-
tem energy management mechanisms or encourage more adaptive app energy consump-
tion. ECOSystem proposed a system where each process was given an energy budget
to spend and would use this “currentcy” to schedule tasks [23]. Both Pixie [11] and
Eon [19] provided the ability for sensor network programs to adapt to changing energy
availability, but did so by relying on special languages or program structure that would
be infeasible to apply to smartphones. Odyssey [7] focuses largely on enabling per-app
resource adaptation, a capability complementary to Jouler. Recently the Cinder [18] OS
based on HiStar [22] proposed new mechanisms enabling explicit resource allocation
and accounting which would help Jouler control uncooperative apps. The battery virtu-
alization proposed by PowerVisor [25] would also be useful as a Jouler mechanism but
does not by itself address the policy problem.

Jouler Energy Managers Recent work on smartphone energy management has used
measurements from large user communities to categorizing apps based on energy con-
sumption. Carat has been installed by over 500,000 devices, and attempts to identify



16 Anudipa Maiti, Yihong Chen and Geoffrey Challen

two energy anomalies: bugs and hogs [14]. Carat is a notable attempt to address smart-
phone energy management but suffers from several drawbacks that Jouler could help
address. First, Carat’s app generalizations fail to consider the differences in smartphone
users our data has demonstrated, which render an app that one user considers acceptable
a hog to another user. Second, Carat has the same heavy-handed mechanisms available
to it as all other current energy management approaches: remove the app or stop using
it. Jouler’s mechanisms would provide Carat with more tools to enforce its classifica-
tion. PowerLet [8] is another system that suffers a similar weakness in that it relies
on users to take energy saving actions, rather than creating an interface as Jouler does
which allow these actions to be performed programmatically.

Existing Energy Management Apps The Google Play Store provides Android users
with multiple options for controlling their energy consumption but many of them re-
quire root privileges. JuiceDefender2 controls the underlying smartphone hardware such
as enabling and disabling wireless interfaces to attempt to keep energy consumption un-
der control. Easy Battery Saver3 offers users the choice of multiple energy modes and
a variety of battery lifetime estimation tools. Unfortunately, both these apps have to
apply policies across the entire phone and cannot control individual apps. The mech-
anisms currently available to these tools are too blunt to effectively control apps with
varying usage patterns.But we expect that such approaches may be more effective with
the additional app information and fine-grained mechanisms Jouler provides. Tools such
as Mr. Nice Guy4 which allows per-app priority adjustments, force users to manually
fiddle with priorities and act as energy managers to implement specific policy goals.

8 Future Work and Conclusions

To conclude we have presented the Jouler policy framework which enables flexible and
effective smartphone energy management benefiting both developers and end users.
With the Jouler service running on the PHONELAB testbed, we are planning several next
steps. Based on the lessons learned from our evaluations, we plan to improve our energy
managers by having policies that do not hinder user experience. For example, brightness
level needs to be changed more intuitively. We also plan to add new mechanisms to
the existing framework that allow the energy manager to effectively enhance device
performance for users who do not mind shorter lifetime hours. Lastly, we are working
to modify several apps with sources available as part of the AOSP to allow them to use
Jouler’s cooperative library. We expect that the continued evaluation on the PHONELAB
testbed will lead to new results and hope to eventually prepare a patch allowing Jouler
to be considered for inclusion in the AOSP.

References

[1] Battery Life: Is That All There Is? . http://www.jdpower.com/
resource/jd-power-insights-i-battery-life-all-there.

2 http://www.juicedefender.com
3 http://goo.gl/GfcI2q
4 http://goo.gl/8utSxe

http://www.jdpower.com/resource/jd-power-insights-i-battery-life-all-there
http://www.jdpower.com/resource/jd-power-insights-i-battery-life-all-there


Jouler: A Policy Framework 17

[2] Monsoon power monitor. http://www.msoon.com/LabEquipment/
PowerMonitor/.

[3] BANERJEE, N., RAHMATI, A., CORNER, M., ROLLINS, S., AND ZHONG, L.
Users and batteries: interactions and adaptive energy management in mobile sys-
tems. In In Proc. UbiComp, 2007. 11 David R. Choffnes and Fabin (2008).

[4] BROUWERS, N., ZUNIGA, M., AND LANGENDOEN, K. Neat: a novel energy
analysis toolkit for free-roaming smartphones. In Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems (2014), ACM, pp. 16–30.

[5] DING, N., WAGNER, D., CHEN, X., PATHAK, A., HU, Y. C., AND RICE, A.
Characterizing and modeling the impact of wireless signal strength on smart-
phone battery drain. In Proceedings of the ACM SIGMETRICS/International
Conference on Measurement and Modeling of Computer Systems (New York, NY,
USA, 2013), SIGMETRICS ’13, ACM, pp. 29–40.

[6] DONG, M., CHOI, Y.-S. K., AND ZHONG, L. Power modeling of graphical user
interfaces on oled displays. In Proceedings of the 46th Annual Design Automation
Conference (New York, NY, USA, 2009), DAC ’09, ACM, pp. 652–657.

[7] FLINN, J., AND SATYANARAYANAN, M. Energy-aware adaptation for mobile
applications. SIGOPS Oper. Syst. Rev. 33, 5 (1999), 48–63.

[8] JUNG, W., CHON, Y., KIM, D., AND CHA, H. Powerlet: An active battery in-
terface for smartphones. In Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (New York, NY, USA, 2014),
UbiComp ’14, ACM, pp. 45–56.

[9] LIN, F. X., WANG, Z., AND ZHONG, L. K2: A mobile operating system
for heterogeneous coherence domains. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (New York, NY, USA, 2014), ASPLOS ’14, ACM, pp. 285–300.

[10] LIU, J., PRIYANTHA, B., HART, T., RAMOS, H. S., LOUREIRO, A. A., AND
WANG, Q. Energy efficient gps sensing with cloud offloading. In Proceedings of
the 10th ACM Conference on Embedded Network Sensor Systems (2012), ACM,
pp. 85–98.

[11] LORINCZ, K., RONG CHEN, B., WATERMAN, J., WERNER-ALLEN, G., AND
WELSH, M. Resource Aware Programming in the Pixie OS. In ACM Conference
on Embedded Networked Sensor Systems (SenSys’08) (November 2008).

[12] MITTAL, R., KANSAL, A., AND CHANDRA, R. Empowering developers to es-
timate app energy consumption. In Proceedings of the 18th Annual International
Conference on Mobile Computing and Networking (New York, NY, USA, 2012),
Mobicom ’12, ACM, pp. 317–328.

[13] NANDUGUDI, A., MAITI, A., KI, T., BULUT, F., DEMIRBAS, M., KOSAR, T.,
QIAO, C., KO, S. Y., AND CHALLEN, G. Phonelab: A large programmable
smartphone testbed. In Proc. 1st International Workshop on Sensing and Big Data
Mining (SenseMine 2013) (November 2013).

[14] OLINER, A. J., IYER, A. P., STOICA, I., LAGERSPETZ, E., AND TARKOMA,
S. Carat: collaborative energy diagnosis for mobile devices. In SenSys (2013),
C. Petrioli, L. P. Cox, and K. Whitehouse, Eds., ACM, p. 10.

http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/


18 Anudipa Maiti, Yihong Chen and Geoffrey Challen

[15] PUNZALAN, R. Smartphone Battery Life a Critical Factor for Customer Satisfac-
tion . http://www.brighthand.com/default.asp?newsID=18721.

[16] QIAN, F., SEN, S., AND SPATSCHECK, O. Characterizing resource usage for
mobile web browsing. In Proceedings of the 12th annual international conference
on Mobile systems, applications, and services (2014), ACM, pp. 218–231.

[17] RAVINDRANATH, L., AGARWAL, S., PADHYE, J., AND RIEDERER, C. Procras-
tinator: Pacing mobile apps usage of the network. In Proceedings of the 12th
annual international conference on Mobile systems, applications, and services
(2014), ACM, pp. 232–244.

[18] RUMBLE, S. M., STUTSMAN, R., LEVIS, P., MAZIÈRES, D., AND ZELDOVICH,
N. Apprehending joule thieves with cinder. In MobiHeld ’09: Proceedings of
the 1st ACM workshop on Networking, systems, and applications for mobile
handhelds (New York, NY, USA, 2009), ACM, pp. 49–54.

[19] SORBER, J., KOSTADINOV, A., BRENNAN, M., GARBER, M., CORNER, M.,
AND BERGER, E. D. Eon: A Language and Runtime System for Perpetual Sys-
tems. In ACM Conference on Embedded Networked Sensor Systems (SenSys’07)
(November 2007).

[20] XU, F., LIU, Y., LI, Q., AND ZHANG, Y. V-edge: Fast self-constructive power
modeling of smartphones based on battery voltage dynamics. In Proceedings of
the 10th USENIX Conference on Networked Systems Design and Implementation
(Berkeley, CA, USA, 2013), nsdi’13, USENIX Association, pp. 43–56.

[21] XU, F., LIU, Y., MOSCIBRODA, T., CHANDRA, R., JIN, L., ZHANG, Y., AND
LI, Q. Optimizing background email sync on smartphones. In Proceeding of
the 11th annual international conference on Mobile systems, applications, and
services (2013), ACM, pp. 55–68.

[22] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND MAZIÈRES, D.
Making information flow explicit in histar. In Proceedings of the 7th symposium
on Operating systems design and implementation (2006), USENIX Association,
pp. 263–278.

[23] ZENG, H., FAN, X., ELLIS, C. S., LEBECK, A., AND VAHDAT, A. ECOSys-
tem: Managing Energy as a First Class Operating System Resource. In
Proc. Architectural Support for Programming Languages and Operating Systems
(ASPLOS) (San Jose, CA, October 2002).

[24] ZHANG, L., TIWANA, B., QIAN, Z., WANG, Z., DICK, R. P., MAO, Z. M.,
AND YANG, L. Accurate online power estimation and automatic battery behavior
based power model generation for smartphones. In Proceedings of the Eighth
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis (New York, NY, USA, 2010), CODES/ISSS ’10, ACM, pp. 105–
114.

[25] ZHANG, N., RAMANATHAN, P., KIM, K.-H., AND BANERJEE, S. Powervisor:
A battery virtualization scheme for smartphones. In Proceedings of the Third
ACM Workshop on Mobile Cloud Computing and Services (New York, NY, USA,
2012), MCS ’12, ACM, pp. 37–44.

http://www.brighthand.com/default.asp?newsID=18721

	Jouler: A Policy Framework Enabling Effective and Flexible Smartphone Energy Management
	Anudipa Maiti, Yihong Chen and Geoffrey Challen

