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Abstract—Battery lifetime continues to be a top complaint
about smartphones. Dynamic voltage and frequency scaling
(DVFS) has existed for mobile device CPUs for some time, and
provides a tradeoff between energy and performance. Dynamic
frequency scaling is beginning to be applied to memory as well
to make more energy-performance tradeoffs possible.

We present the first characterization of the behavior of the
optimal frequency settings of workloads running both, under
energy constraints and on systems capable of CPU DVFS and
memory DFS, an environment representative of next-generation
mobile devices. Our results show that continuously using the
optimal frequency settings results in a large number of frequency
transitions which end up hurting performance. However, by
permitting a small loss in performance, transition overhead can
be reduced and end-to-end performance and energy consumption
improved. We introduce the idea of inefficiency as a way of
constraining task energy consumption relative to the most energy-
efficient settings, and characterize the performance of multiple
workloads running under different inefficiency settings. Overall
our results have multiple implications for next-generation mobile
devices exposing multiple energy-performance tradeoffs.

I. INTRODUCTION

All modern computing devices—from smartphones to
datacenters—must manage energy consumption. Energy-
performance tradeoffs on mobile devices have existed for some
time, such as dynamic voltage and frequency scaling (DVFS)
for CPUs and the choice between more (Wifi) and less (mobile
data) energy-efficient network interfaces. But as smartphone
users continue to report battery lifetime as both their top
concern and a growing problem [33], smartphone designs are
providing even more energy-performance tradeoffs, such as the
heterogeneous cores provided by ARM’s big.LITTLE [16]
architecture. Still other hardware energy-performance tradeoffs
are on the horizon, arising from capabilities such as memory
frequency scaling [8] and nanosecond-speed DVFS emerging
in next-generation hardware designs [21].

We envision a next-generation smartphone capable of CPU
DVFS (Dynamic Voltage and Frequency Scaling) and memory
DFS (Dynamic Frequency Scaling). While the addition of
memory DFS can be used to improve energy-constrained
performance, the larger frequency state space compared to
CPU DVFS alone also provides more incorrect settings that
waste energy or degrade performance. To better understand
these systems, we characterize how the most performant CPU
and memory frequency settings change for multiple workloads
under various energy constraints.

Our work presents two advances over previous efforts.
First, while previous works have explored energy minimiza-
tions using DVFS under performance constraints focusing on
reducing slack, we are the first to study the potential DVFS

settings under an energy constraint. Specifying performance
constraints for servers is appropriate, since they are both wall-
powered and have quality of service constraints that must be
met. Therefore, they do not have to and cannot afford to
sacrifice too much performance. However, for mobile systems
it is more critical to save energy as battery lifetime is the major
concern. Therefore, we argue that optimizing performance
under given energy constraint is fitting for mobile systems.
We introduce a new metric inefficiency that can be used to
specify energy constraints and it is both application and device
independent—unlike existing metrics.

Second, we are the first to characterize optimal frequency
settings for systems providing CPU DVFS and memory DFS.
We find that closely tracking the optimal settings during execu-
tion produces many transitions and large frequency transition
overhead. However, by accepting a certain amount of perfor-
mance loss, the number of transitions and the corresponding
overhead can be reduced. We characterize the relationship
between the amount of performance loss and the rate of
tuning for several benchmarks, and introduce the concepts of
performance clusters and stable regions to aid the process.

We make the following contributions:

1) We introduce a new metric, inefficiency, that allows the
system to express the amount of extra energy that can be
used to improve performance.

2) We study the energy-performance trade-offs of systems that
are capable of CPU DVFS and memory DFS for multiple
applications. We show that poor frequency selection can
hurt both performance and energy consumption.

3) We characterize the optimal frequency settings for multiple
applications and inefficiency budgets. We introduce perfor-
mance clusters and stable regions to reduce tuning overhead
when a small degradation in performance is allowed.

4) We study the implications of using performance clusters on
energy management algorithms.

We use the Gem5 simulator, the Android smartphone
platform and Linux kernel, and an empirical power model
to (1) measure the inefficiency of several applications for a
wide range of frequency settings, (2) compute performance
clusters, and (3) study how performance clusters evolve. We
are currently constructing a complete system to study tuning
algorithms that can build on our insights to adaptively choose
frequency settings at runtime.

The rest of our paper is structured as follows. Section II
introduces the inefficiency metric, while Section III describes
our system, energy model, and experimental methodology.
Section IV studies the impact of CPU and memory fre-
quency scaling on the performance and energy consumption of
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multiple applications, while Section V characterizes the best
frequency settings for various phases of the applications. As
tracking the best settings is expensive, Section VI introduces
performance clusters, and stable regions and studies their
characteristics. Section VII presents implications of using
performance clusters on energy-management algorithms, and
Section VIII summarizes and concludes the paper.

II. INEFFICIENCY

Extending battery life is critical for mobile systems, and
therefore energy management algorithms for mobile systems
should optimize performance under energy constraints. While
several researchers have proposed algorithms that work under
energy constraints, these approaches require that the con-
straints be expressed in terms of absolute energy [36], [39]. For
example, rate-limiting approaches take the maximum energy
that can be consumed in a given time period as an input [36].
Once the application consumes its limit, it is paused until the
next time period begins.

Unfortunately, in practice, it is difficult to choose ab-
solute energy constraints appropriately for a diverse group
of applications without understanding their inherent energy
needs. Energy consumption varies across applications, devices,
and operating conditions, making it impractical to choose
an absolute energy budget. Also, applying absolute energy
constraints may slow down applications to the point where total
energy consumption increases and performance is degraded.

Other metrics that incorporate energy take the form of
Energy ∗ Delayn. We argue that while the energy-delay
product can be used as a measure to gauge energy-performance
trade-offs, it is not a suitable constraint to specify how much
energy can be used to improve performance. An effective
constraint should be (1) relative to the applications inherent
energy needs and (2) independent of applications and devices.
Because it uses absolute energy, the energy-delay product
meets neither of these criteria.

We propose a new metric called inefficiency, which con-
strains how much extra energy an application can use to
improve performance. Energy efficiency is defined as the work
done per unit energy. Therefore, the application is said to be
most efficient when it consumes the minimum energy possible
on the given device. The application becomes inefficient as it
starts consuming more than the minimum energy it requires.
We define the ratio of application’s energy consumption (E)
and the minimum energy the application could have consumed
(Emin) on the same device as inefficiency: I = E

Emin
. An

inefficiency of 1 represents an application’s most efficient exe-
cution, while 1.5 indicates that the application consumed 50%
more energy than its most efficient execution. Inefficiency is
independent of workloads and devices and avoids the problems
inherent to absolute energy constraints.

Four questions arise when using inefficiency to establish
energy constraints for real systems:

1) What are the bounds of inefficiency?
2) How is the inefficiency budget set for a given application?
3) How is inefficiency computed?
4) How should systems stay within the inefficiency budget?

We continue by addressing these questions.

A. Inefficiency Bounds and Inefficiency Budget

Devices will operate between an inefficiency of 1 and Imax
which represents the unbounded energy constraint allowing the
application to consume as much energy as necessary to deliver
the best performance. Imax depends upon applications and
devices. We argue that absolute value of Imax is irrelevant
because, when energy is unconstrained, algorithms can burn
unbounded energy and only focus on delivering the best
performance. The inefficiency budget matters the most when
application has bounded energy constraints and it can be set
by the user or the applications. The OS can also set the
inefficiency budget based on application’s priority allowing
the higher priority applications to burn more energy than
lower priority applications. While higher inefficiency values
represent looser energy constraints, this does not guarantee
higher performance. It is the responsibility of the energy
management algorithms to provide best performance under a
given inefficiency budget.

B. Computing Inefficiency

Once the system specifies an inefficiency budget, the
energy management algorithms must tune the system to stay
within the inefficiency budget while delivering the best perfor-
mance. To compute inefficiency, we need both the energy (E)
consumed by the application and the minimum energy (Emin)
that application could have consumed. Computing E is straight
forward; Intel Sandy bridge architecture [18] already provides
counters capable of measuring energy consumption at runtime
and the research community has tools and models to estimate
the absolute energy of applications [4], [6], [25], [30], [38].

Computing Emin is challenging due to inter-component
dependencies. We propose two methods for computing Emin:

• Brute force search: Emin can be estimated using the power
models (or tools) for a given workload at all possible system
settings. The minimum of all these estimations is Emin.
While the overhead of this approach is high, it could be
improved with a lookup table.

• Predicting and learning: The overhead of the Emin com-
putation can be further reduced by predicting Emin based on
previous observations and by continuous learning. A variety
of learning based approaches [24] have been proposed in
the past to estimate various metrics and application phases
which can be applied to Emin estimation as well.

We are working towards designing efficient energy pre-
diction models for CPU and memory. Our models consider
cross-component interactions on performance and energy con-
sumption. In this work we demonstrate how to use inefficiency
and defer both predicting and optimizing Emin to future work.

C. Managing Inefficiency

Future energy management algorithms need to tune system
settings to keep the system within the specified inefficiency
budget and deliver the best performance. Techniques that
use predictors such as instructions-per-cycle (IPC) to decide
when to use DVFS or migrate threads can be extended to
operate under given inefficiency budget [1], [19], [20], [35].
Efforts that have tried to optimize memory energy consumption
can be adapted to use inefficiency as a constraint to their
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Fig. 1: System Block Diagram: Blocks that are newly added or
significantly modified from Gem5 origin implementation are shaded.

system [8], [10], [11], [12], [23], [27], [37], [40]. While
most of the existing multi-component energy management
approaches work under performance constraints, some have
the potential to be modified to work under energy constraints
and thus could operate under inefficiency budget [3], [9], [7],
[13], [14], [26], [34]. We leave incorporating some of these
algorithms into a system as future work. In this paper, we
characterize the optimal performance point under different
inefficiency constraints and illustrate that the stability of these
points has implications for future algorithms.

III. SYSTEM AND METHODOLOGY

Energy management algorithms must tune the underlying
hardware components to keep the system within the given
inefficiency budget. Hardware components provide multiple
”knobs” that can be tuned to trade-off performance for energy
savings. For example, the energy consumed by the CPU can
be managed by tuning its frequency and voltage. Recent
research [8], [11] has shown that DRAM frequency scaling
also provides performance and energy trade-offs.

In this work, we scale frequency and voltage for the
CPU and scale only frequency for the memory [8], [11].
Dynamic Frequency Scaling (DFS) for memory has emerged
as a means to trade-off performance for energy savings. As no
current hardware systems support memory frequency scaling,
we resort to Gem5 [2], a cycle-accurate full system simulator
to perform our studies.

A. System Overview

Current Gem5 versions provide the infrastructure necessary
to change CPU frequency and voltage; we extended Gem5
DVFS to incorporate memory frequency scaling. As shown
in Figure 1, Gem5 provides a DVFS controller device that
provides an interface to control frequency by the OS at
runtime. We developed a memory frequency governor simi-
lar to existing Linux CPU frequency governors. Timing and
current parameters of DRAM are scaled with its frequency as
described in the technical note from Micron [29]. The blocks
that we added or significantly modified from Gem5’s original
implementation are shaded in Figure 1.

B. Energy Models

We developed energy models for the CPU and DRAM for
our studies. Gem5 comes with the energy models for various

DRAM chipsets. The DRAMPower [6] model is integrated
into Gem5 and computes the memory energy consumption
periodically during the benchmark execution. However, Gem5
lacks a model for CPU energy consumption. We developed
a processor power model based on empirical measurements
of a PandaBoard [32] evaluation board. The board includes a
OMAP4430 chipset with a Cortex A9 processor; this chipset
is used in the mobile platform we want to emulate, the
Galaxy Nexus S. We ran microbenchmarks designed to stress
the PandaBoard to its full utilization and measured power
consumed using an Agilent 34411A multimeter. Because of
the limitations of the platform, we could only measure peak
dynamic power. Therefore, to model different voltage levels we
scaled it quadratically with voltage and linear with frequency
(P∝V 2f). Our peak dynamic power agrees with the numbers
reported by previous work [5] and the datasheets.

We split the power consumption into three categories:
dynamic power, background power, and leakage power. Back-
ground power is consumed by idle units when the processor is
not computing, but unlike leakage power, background power
scales with clock frequency. We measure background power
by calculating the difference between the CPU power con-
sumption in its power on idle state and deep sleep mode (not
clocked). Because background power is clocked, it is scaled in
a similar manner to dynamic power. Leakage power comprises
up to 30% of microprocessor peak power consumption [15]
and is linearly proportional to supply voltage [31].

C. Experimental Methodology

Our simulation infrastructure is based on Android 4.1.1
“Jelly Bean” run on the Gem5 full system simulator. We
use default core configuration provided by Gem5 in revision
10585, that is designed to reflect ARM Cortex-A15 processor
with L1 cache size of 64 KB with access latency of 2 core
cycles and a unified L2 cache of size 2 MB with hit latency of
12 core cycles. The CPU and caches operate under the same
clock domain. For our purposes, we have configured the CPU
clock domain frequency to have a range of 100–1000 MHZ
with highest voltage being 1.25V.

For the memory system, we simulated a LPDDR3 single
channel, one rank memory using an open-page access policy.
Timing and current parameters for LPDDR3 are configured
as specified in data sheets from Micron [28]. Memory clock
domain is configured with a frequency range of 200MHz to
800MHz. As mentioned earlier, we did not scale memory
voltage. The power supplies—VDD and VDD2—for LPDDR3
are fixed at 1.8V and 1.2V respectively.

We first simulated 12 integer and 9 floating point SPEC
CPU2006 benchmarks [17], with each benchmark either run-
ning to completion or up to 2 billion instructions. We booted
the system and then changed CPU and memory frequency
using userspace frequency governors before starting the bench-
mark. We ran 70 simulations for each benchmark, with a
combination of 10 CPU and 7 memory frequency steps using
step size of 100MHz. To study the finer details of workload
phases, we then ran a total of 496 simulations with a finer step
granularity of 30MHz for CPU and 40MHz for memory for
selected benchmarks that have interesting and unique phases.
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Fig. 2: Inefficiency vs. Speedup For Multiple Applications: In general, performance improves with increasing inefficiency budgets. A poorly
designed algorithm may select bad frequency settings which could waste energy and degrade performance simultaneously.

We collected samples of a fixed amount of work so that
each sample would represent the same work even across
different frequencies. In Gem5, we collected performance and
energy consumption data every 10 million user mode instruc-
tions. Gem5 provides a mechanism to distinguish between
user mode and kernel mode instructions. We used this feature
to remove periodic OS traffic and enable a fair comparison
across simulations of different CPU and memory frequencies.
We used the collected performance and energy data to study
the impact of workload dynamics on the stability of CPU
and memory frequency settings delivering best performance
under a given inefficiency budget. Note that, all our studies
are performed using measured performance and power data
from the simulations, we do not predict performance or energy.
The interplay of performance and energy consumption of
CPU and memory frequency scaling is complex as pointed by
CoScale [9]. In the next Section, we measure and characterize
the larger space of system level performance and energy trade-
offs of various CPU and memory frequency settings.

IV. INEFFICIENCY VS. SPEEDUP

Scaling individual components—CPU and memory—using
DVFS has been studied in the past to make power performance
trade-offs. To the best of our knowledge, prior work has
not studied the system level energy-performance trade-offs of
combined CPU and memory frequency scaling. We take a
first step and explore these trade-offs and show that incorrect
frequency settings may burn extra energy without improving
performance.

We performed offline analysis of the data collected from
our simulations to study the inefficiency-performance trends
for various benchmarks. With a brute force search, we found
Emin and computed inefficiency at all settings. We express
performance in terms of speedup, the ratio of execution time
for a given configuration to the longest execution time.

Figure 2 plots the speedup and inefficiency for three work-
loads operating with various CPU and memory frequencies.
As the figure shows, the ability of a workload to trade-off
energy and performance using CPU and memory frequency,
depends on its mix of CPU and memory instructions. For
CPU intensive workloads like bzip2, speedup varies only with
CPU frequency; memory frequency has no impact on speedup.
For workloads that have balanced CPU and memory intensive
phases like gobmk, speedup varies with both CPU and memory
frequency. The milc benchmark has some memory intensive
phases, however it is more CPU intensive and therefore its
performance is more dependent upon CPU frequency than
memory frequency. We make three major observations:

Running slower doesn’t mean that system is running efficiently.
At the lowest frequencies, 100MHz and 200MHz for CPU
and memory respectively, gobmk takes the longest to execute.
These settings slow down the application so much that its
overall energy consumption increases, thereby resulting in
inefficiency of 1.55. Algorithms that choose these frequency
settings spend 55% more energy without any performance
improvement.

Higher inefficiency doesn’t always result in higher perfor-
mance: gobmk is fastest at 1000MHz for CPU and 800MHz
for memory frequency. It runs at inefficiency of 1.65 at
these frequency settings. Allowing gobmk to run at higher
inefficiency of say 2.2, doesn’t improve performance. In fact,
any algorithms that force the application to consume all of
the given energy budget may degrade application performance.
For example, gobmk runs 1.5x slower if it is forced to run at
budget of 2.2 at 1000MHz and 200MHz of CPU and memory
frequencies respectively.

Smart algorithms should search for optimal points under the
inefficiency constraint and not just at the inefficiency con-
straint. Algorithms forcing the system to run exactly at given
budget might end up wasting energy or, even worse, degrading
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Fig. 3: Optimal Performance Point for gobmk Across Inefficien-
cies: At low inefficiency budgets, the optimal frequency settings
follow CPI of the application, and select high memory frequencies
for memory intensive phases. Higher inefficiency budgets allow the
system to run always at the maximum CPU and memory frequencies.

performance. A smart algorithm should a) stay under given
inefficiency budget b) should use only as much inefficiency
budget as needed c) and deliver the best performance.

Consequently, like other constraints used by algorithms
such as performance, power and absolute energy, inefficiency
also allows energy management algorithms to waste system
energy. We argue that, although inefficiency doesn’t com-
pletely eliminate the problem of wasting energy, it mitigates
the problem. For example, rate limiting approaches waste
energy as energy budget is specified for a given amount of
time interval and doesn’t require a specific amount of work
to be done within that budget. However, inefficiency mandates
the underlying algorithms to complete the given amount of
work under the constraint.

V. PERFORMANCE UNDER AN INEFFICIENCY BUDGET

In this section we study the characteristics of the best per-
forming CPU and memory frequency settings, optimal settings,
across different inefficiency constraints and how they change
during application execution. To find the optimal settings, we
wrote a simple algorithm that first filters all possible frequency
settings under given inefficiency budget. It then finds the CPU
and memory frequency settings that result in highest speedup.
In cases where multiple settings result in similar speedup
(within 0.5%), to filter out simulation noise, the algorithm
selects the settings with highest CPU (first) and then memory
frequency as this setting is bound to have highest performance
among the other possibilities.

Figure 3 plots the optimal settings for gobmk for all bench-
mark samples (each of length 10 M instructions) across multi-
ple inefficiency constraints. At low inefficiencies, the optimal
settings follow the trends in CPI (cycles per instruction) and
MPKI (misses per thousand instructions). Regions of higher
CPI correspond to memory intensive phases, as the SPEC
benchmarks don’t have any IO or interrupt based portions. For

phases that are CPU intensive (lower CPI), the optimal settings
have higher CPU frequency and lower memory frequency. At
low inefficiency constraints, due to the limited energy budget,
a careful allocation of energy across components becomes
critical to achieve optimal performance. Higher inefficiencies
allow the algorithms to select higher frequency settings in
order to achieve greater speedup. We define unconstrained
inefficiency (labeled∞) as the scenario in which the algorithm
always chooses the highest frequency settings as these settings
always deliver the highest performance. There are two key
problems associated with tracking the optimal settings:

It is expensive. Running the tuning algorithm at the end of
every sample to track optimal settings comes at a cost: 1)
searching and discovering the optimal settings 2) real hardware
has transition latency overhead for both the CPU and the
memory frequency. For example, while the search algorithm
presented by CoScale [9] takes 5us to find optimal frequency
settings, time taken by PLLs to change voltage and frequency
in commercial processors is in the order of 10s of microsec-
onds. Reducing the frequency at which tuning algorithms need
to re-tune is critical to reduce the impact of tuning overhead
on application performance.

Limited energy performance trade-off options. Choosing the
optimal settings for every sample may hinder some energy-
performance trade-off that could have been made if perfor-
mance was not so tightly bounded (to only highest perfor-
mance). For example, bzip2 is CPU bound and therefore its
performance at memory frequency of 200MHz is within 3%
of performance at a memory frequency of 800MHz while
the CPU is running at 1000MHz. By sacrificing that 3% of
performance, the system could have consumed 1/4 the memory
background energy, saving 2.7% of the system energy and
staying well under the given inefficiency budget.

We believe that, if the user is willing to sacrifice some
performance under given inefficiency budget, algorithms would
be able to make better trade-offs between the cost of frequent
tuning and performance.

VI. PERFORMANCE CLUSTERS

Tracking the best performance settings for a given ineffi-
ciency budget is expensive. In this section, we study how we
can amortize the cost by trading-off some performance. We de-
fine the concept of performance clusters. All frequency settings
(CPU and memory frequency pairs) that have performance
within a performance degradation threshold (cluster threshold)
compared to the performance of the optimal settings for a
given inefficiency budget form the performance cluster for
that inefficiency constraint. We define the term stable regions
as regions in which at least one pair of CPU and memory
frequency settings is common among all samples in the region.

In this section, we first study the trends in performance
clusters for multiple applications. Then we characterize the sta-
ble regions and explore the implications of using stable regions
on energy-performance trade-offs for multiple inefficiencies
and cluster thresholds. In the end, we study the sensitivity of
performance clusters to number of frequency settings available
in the system.
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A. Performance Clusters

We search for the performance clusters using an algorithm
that is similar to the approach we used to find the optimal
settings. We first filter the settings that fall within a given
inefficiency budget and then search for the optimal settings in
the first pass. In the second pass, we find all of the settings
that have a speedup within the specified cluster threshold of
the optimal performance.

Figures 4, 5 plot the performance clusters during the exe-
cution of the benchmarks gobmk and milc. We plot inefficiency
budgets of 1 and 1.3 and cluster thresholds of 1% and 5%. For
our benchmarks, we observed that the maximum achievable
inefficiency is anywhere from 1.5 to 2. We chose inefficiency
budgets of 1 and 1.3 to cover low and mid inefficiency budgets.
Cluster thresholds of 1% and 5% allow us to model the
two extremes of tolerable performance degradation bounds.
A cluster threshold of less than 1% may limit the ability
to tune less often. While cluster thresholds greater than 5%
are probably not realistic as user is already compromising
performance by setting low inefficiency budgets to save energy.

Figures 4(c), 4(d) plot the performance clusters for gobmk
for inefficiency budget of 1.3 and cluster thresholds of 1%
and 5% respectively. As we observed in Figure 3, the optimal
settings for gobmk change every sample (of length 10 million
instructions) at inefficiency of 1.3 and follow application
phases (CPI). Figure 4(c) shows that by allowing just 1%
performance degradation, the number of settings available to
choose from increase. For example, for sample 11, the optimal

settings were at 920MHz CPU and 580MHz memory. With 1%
cluster threshold, the range of available frequencies increases
to 900MHz-9200MHz for CPU and 420MHz-580MHz for
memory. With a 5% cluster threshold, the range of available
frequencies increases further as shown in Figure 4(d). With
an increase in number of available settings, the probability of
finding common settings in two consecutive samples increases,
allowing the system to stay at one frequency setting for
a longer time. For example, the optimal settings changed
between samples 24 and 25, however with cluster threshold
of 5% CPU and memory frequency can stay fixed at 750MHz
and 800MHz respectively. The higher the cluster threshold is,
the higher the length of the stable regions would be.

Figures 4(a), 4(c) plot the performance clusters for gobmk
for two different inefficiency budgets of 1.0 and 1.3 for cluster
threshold of 1%. Not all of the stable regions increase in length
with increasing inefficiency; this trend varies with workloads.
If consecutive samples of a workload have a small difference
in performance, but differ significantly in energy consump-
tion, then only at higher inefficiency budgets will the system
find common settings for these consecutive samples. This is
because, the performance clusters of higher inefficiencies can
include settings operating at lower inefficiencies as long as
their performance degradation is within the cluster threshold.
For example, the memory frequency oscillates for samples
32-39 for gobmk at inefficiency budget of 1.0, while the
system could stay fixed at 800MHz memory at inefficiency
of 1.3. However, for workload phases that result in high
performance difference in consecutive samples at given pair of
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frequency settings, higher inefficiency budgets might not help
as there might not be any common frequency pairs that have
performance within set cluster threshold (for example samples
3-5 in Figures 4(a), 4(c)). Figure 5 shows that milc has similar
trends as gobmk.

An interesting observation from the performance clusters
is that algorithms like CoScale [9] that search for the best
performing settings every interval starting from the maximum
frequency settings are not efficient. Algorithms can reduce the
overhead of optimal settings search by starting search from the
settings selected for the previous interval as application phases
are often stable for multiple sample intervals.

B. Stable Regions

So far, we have made observations by looking at CPU and
memory frequencies separately and finding (visually) where
they both stay stable. However, when either of the memory or
CPU performance clusters move, the system needs to make a
transition. Looking at plots of individual components does not
provide a clear picture of the stable regions of the entire CPU
and memory system. Figures 4 and 5 plot the performance
clusters and not the stable regions.

We wrote an algorithm to find all of the stable regions
for a given application. It starts by computing performance
clusters for a given sample and moves ahead sample by sample.
For every sample it computes available settings by finding
the common settings between the current sample performance
cluster and the available settings until the previous sample.
When the algorithm finds no more common samples, it marks
the end of the stable region. If more than one frequency pair
exists in the available settings for this region, the algorithm
chooses the setting with highest CPU (first) and then memory

frequency as optimal settings for this region. Figure 6 shows
the CPU and memory frequency settings selected for stable
regions of benchmark lbm. It also has markers indicating the
end of each stable region. In this figure, note that for every
stable region (between any two markers) the frequency of both
CPU and memory stay constant.

Our algorithm is not practical for real systems, as it knows
the characteristics of the future samples and their performance
clusters in the beginning of a stable region. We are currently
designing algorithms in hardware and software that are capable
of tuning the system while running the application as future
work. In Section VII, we propose ways in which length of
stable regions and the available settings for a given region
can be predicted for energy management algorithms in real
systems.

Figure 7 plots stable regions for benchmarks gcc and
lbm for multiple inefficiency budgets and cluster thresholds.
With increase in cluster threshold from 3% to 5% there is
a significant drop in the number of transitions made by gcc
at lower inefficiency budgets. At higher inefficiency budgets,
algorithms can choose the highest available frequency settings
and therefore, even if a higher cluster threshold is allowed,
we don’t observe any changes in the selection of settings.
The relative number of transitions made by lbm decreases
with an increase in cluster threshold, however, the absolute
number of transitions compared to other benchmarks does not
decrease significantly as it doesn’t have too many transition to
start with at 3%. Like our previous observation, the number
of transitions also decreases with increasing inefficiency for
these two benchmarks. This shows that there is a high number
of consecutive samples that have similar performance but
different inefficiency at the same CPU and memory frequency
settings. A decrease in the number of transitions is a result of
an increase in the length of stable regions.

Figure 8 summarizes the number of transitions per billion
instructions for multiple cluster thresholds and inefficiency
budgets across benchmarks. As the figure shows, tracking
the optimal frequency settings results in highest number of
transitions. A common observation is that the number of
transitions required decreases with an increase in cluster
threshold. For bzip2, increase in inefficiency from 1.0 to 1.3
increases the number of transitions needed to track the opti-
mal settings. The number of available settings increase with
inefficiency increasing the average length of stable regions. At
an inefficiency budget of 1.6, the average length of a stable
region increases drastically as shown in Figure 9(b), which

7



To appear at IISWC’15. Do not distribute.

bz
ip2 gc

c

go
bm

k
lbm lib

q.
milc

0
10
20
30
40
50
60
70
80
90

Tr
an

si
tio

ns
pe

r
B

ill
io

n
In

st
ru

ct
io

ns

(a) I = 1.0

bz
ip2 gc

c

go
bm

k
lbm lib

q.
milc

(b) I = 1.3

bz
ip2 gc

c

go
bm

k
lbm lib

q.
milc

(c) I = 1.6

optimal
1%
3%
5%

Fig. 8: Number of Transitions with Varying Inefficiency Budgets and Cluster Thresholds: The number of frequency transitions decrease
with increase in cluster threshold. The amount of change varies with benchmark and inefficiency budget.

1.0 1.2 1.4 1.6
1
2
3
4
5
6
7
8

L
en

gt
h

of
St

ab
le

R
eg

io
ns

(i
n

Sa
m

pl
es

)

(a) Gobmk

1.0 1.2 1.4 1.6
0

50

100

150

200

(b) Bzip2
bz

ip2 gc
c

go
bm

k
lbm lib

q.
milc

0

10

20

30

40

50

60

(c)

1%
3%
5%

Fig. 9: Distribution of Length of Stable Regions: The average length of stable regions increases with cluster threshold.

bz
ip2 gc

c

go
bm

k
lbm lib

q.
milc

0.0
0.2
0.4
0.6
0.8
1.0
1.2

E
xe

cu
tio

n
Ti

m
e

(N
or

m
al

iz
ed

)

1.0 1.1 1.2 1.3 1.6 ∞

Fig. 10: Variation of Performance with Inefficiency: Performance
improves with increase in inefficiency budget, but the amount of
improvement varies across benchmarks.

requires much less transitions with 1% cluster threshold and no
transitions with higher cluster thresholds of 3% and 5%. Note
that there is only one point on the box plot of bzip2 for 3%
and 5% cluster thresholds at inefficiency of 1.6, because the
benchmark is covered entirely by only one region. However,
gobmk has rapidly changing phases and therefore, with an
increase in either inefficiency or cluster thresholds, there is
not much of an increase that we observe in stable region
lengths as shown in Figure 9(a). Therefore the number of
transition per billion instructions decrease only slightly with
increase in cluster threshold and inefficiency budget for gobmk.
Figure 9(c) summarizes the distribution of stable region lengths
observed across benchmarks for multiple cluster thresholds at
inefficiency budget of 1.3.

C. Energy-Performance Trade-offs

In this subsection we analyze the energy-performance
trade-offs made by our ideal algorithm. We then add the tuning

cost of our algorithm and compare the energy performance
trade-offs across multiple applications. We study multiple
cluster thresholds and an inefficiency budget of 1.3.

First, we demonstrate that our tuning algorithm was suc-
cessful in selecting the right settings and thereby keeping the
system under the specified inefficiency budget and summarize
the total performance achieved. We ran a set of simulations and
verified that all applications ran under the given inefficiency
budget for all the inefficiency budgets. Figure 10 shows that
the higher the inefficiency budget is, the lower the execution
time is, making smooth energy-performance trade-offs.

Figure 11 plots the total performance degradation and
energy savings for multiple cluster thresholds with and without
tuning overhead for inefficiency budget of 1.3. Both perfor-
mance degradation and energy savings are computed relative
to the performance and energy of the application running at
optimal settings. Figures 11(a) and 11(b) show that our algo-
rithm is successful in selecting the settings that don’t degrade
performance more than specified cluster threshold. The figure
also shows that with an increase in cluster threshold, energy
consumption decreases because lower frequency settings can
be chosen at higher cluster thresholds. Figure 11(b) shows
that performance (and energy) may improve when tuning
overhead is included due to decrease in frequency transitions.
To determine tuning overhead, we wrote a simple algorithm
to find optimal settings. With search space of 70 frequency
settings, it resulted in tuning overhead of 500us and 30uJ,
which includes computing inefficiencies, searching for the
optimal setting and transition the hardware to new settings.

We summarize our observations from this section here:

1) With an increase in cluster threshold, the range of avail-
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Fig. 11: Energy-performance Trade-offs for Inefficiency Budget of 1.3, Multiple Cluster Thresholds: Performance degradation is always
within the cluster threshold. Allowing small degradation in performance reduces energy consumption, which decreases further when tuning
overhead is included.

able frequencies increases, which increases the probability
of finding common settings in consecutive samples. This
results in longer stable regions.

2) The increase in the length of stable regions with an increase
in inefficiency depends on the workload.

3) The number of transitions required is dictated by the
average length of the stable region. The longer the stable
regions, the lower the number of transitions that the system
need to make.

4) Allowing a higher degradation in performance may, in fact,
result in improved performance when tuning overhead is in-
cluded due to reduction in number of frequency transitions
in the system, consequently energy savings also increase.

D. Sensitivity of Performance Clusters to Frequency Step Size

In this section we study the sensitivity of the performance
clusters to number of frequency steps or frequency step sizes
available in a given system. We computed performance clusters
offline and analyzed the difference between clusters with
coarse and fine frequency steps.

Figure 12 plots performance clusters for gobmk at ineffi-
ciency of 1.3 and cluster threshold of 1%. We chose 1% for our
sensitivity analysis, as the trends in performance clusters are
more explicit at low cluster thresholds. Figure 12(a) plots the
clusters collected with a 100MHz frequency step for both the
CPU and the memory, which is a total of 70 possible settings.
The clusters in Figure 12(b) are collected with 30MHz steps
for CPU frequency and 40MHz steps for memory frequency,
for a total of 496 settings. We observed that the average cluster
length either remains the same or decreases with increase
in number of steps. With increase in number of frequency
steps, there are more choices available to make better energy-
performance trade-offs. Therefore average number of samples
for which one setting can be chosen decreases. For exam-
ple, with 70 frequency settings sample 7 through sample 10
can always run at CPU frequency of 900MHz and memory
frequency of 300MHz. With 496 frequency settings, sample
7 runs at 900MHz, sample 8-9 run at 950MHz and sample
10 runs at 980MHz of CPU frequency. Fine frequency steps
increase the availability of more (and better) choices, resulting
in smaller stable region lengths. In our system, we observed
only a small improvement in performance (<1%) with an
increased number of frequency steps when tuning is free, as
optimal settings in both cases were off by only a few MHz.
It is the balance between the tuning overhead and the energy-
performance savings that is critical in deciding the correct size
of the search space.
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Fig. 12: Performance Clusters at Two Different Frequency Steps:
Figure (a) plots performance clusters collected using 100MHz of
frequency step for both CPU and memory. Figure (b) plots perfor-
mance clusters collected using frequency steps of 30MHz for CPU
and 40MHz for memory. We simulate frequency range of 100MHz-
1000MHz for CPU and 200MHz-800MHz for memory.

VII. ALGORITHM IMPLICATIONS

Higher cluster thresholds indeed result in lower transition
overheads by reducing the number of transitions required.
One may wonder, however, if the thresholds have an impact
on the overhead of energy management algorithms. In other
words, how may higher thresholds reduce the overheads of
searching for the optimal settings or cluster of settings? We
propose that at higher cluster thresholds, algorithms can choose
to not run their search at the end of every interval. As
shown in Section VI, higher cluster thresholds result in longer
stable regions. Smart algorithms can leverage these long stable
regions by tuning less often during these time intervals. We
propose two ways in which this can be achieved.

1) Learning: Algorithms can use learning based approaches to
predict when to run again. Isci. et. al [19] propose simple
ways in which algorithms can detect how long the current
application phase is going to be stable and only choose to
tune at the end of predicted phase for CPU performance.
Similar approaches could be developed that extend this
methodology to detect stable regions of clusters containing
both memory and CPU settings.

2) Offline Analysis: Another approach that can be taken to
reduce the number of tuning events is offline analysis of
the applications. An application can be profiled offline
to identify regions in which the performance cluster is
stable. The profile information of the stable region lengths,
positions, and available settings can then be used at run
time to enable the system to predict how long it can go
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without tuning. Algorithms can also extend the usage of
the profiled information to new applications that may have
phases that match with existing profiled data. Previous
work has already proposed using offline analysis methods
to detect application phases [22], which would be directly
applicable here in our system.

VIII. CONCLUSION

In this work, we introduced the inefficiency metric that
can be used to express amount of battery life that the user
is willing to sacrifice to improve performance. We used DVFS
for the CPU and DFS for the memory as a means to trade-off
performance and save energy consumption. We demonstrated
that, while individual performance-energy trade-offs of single
components are intuitive, the interplay of just these two
components on the energy and performance of applications
is complex. Consequently, we characterized the optimal CPU
and memory frequency settings across applications for multiple
inefficiency budgets. We demonstrated that if the user is willing
to sacrifice minimal performance under a given inefficiency
budget, frequent tuning of the system can be avoided and the
overhead of energy management algorithms can be mitigated.

As future work, we are working towards developing pre-
dictive models for performance and energy that consider cross-
component interactions. We are designing algorithms that use
these models for tuning systems at runtime. Eventually, we
plan on designing a full-system that is capable of tuning mul-
tiple components simultaneously while executing applications.
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