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Dynamic Voltage and Frequency Scaling
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● Only Frequency Scaling

● Performance and power are 
proportional to DRAM frequency
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CPU DVFS and Memory DFS

➢ Managing Systems -  a challenging task

➢ CPU intensive applications – higher CPU frequency

➢ Interplay of performance and energy of CPU and memory frequency scaling is 

complex
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Performance vs. Energy Constraints

➢ Previous efforts explored DVFS under performance constraints

➢ Servers --- working under performance constraints is imperative

➢ Mobile systems –-- operating under energy constraints is fitting

➢ Absolute energy or rate of energy consumption as energy constraints --- 
application and device dependent

➢ Need for a new metric –-- Inefficiency
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Energy Efficient Algorithms

➢ Rate limiting 

➢ Impacts both performance and energy

➢ Energy–Delay products – EDP, ED2P etc.
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➢ Inefficiency: Additional energy that can be used by the application to improve 

performance
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➢ Inefficiency: 

E
min

 – Minimum energy application could have consumed on the same device    

E
total

 – Additional energy application can use to improve performance
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E

min

E
total
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Inefficiency as a System Resource

➢ Agnostic to Devices

➢  Relative to inherent energy needs of the application

➢ Inefficiency tied to priority of the applications
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➢ Methodology

➢ Gem5 

➢ DVFS controller driver

➢ Android 4.1.1 Jelly Bean

➢ CPU : 100 – 1000 MHz, 

          0.65 – 1.25 V

➢ DRAM : 200 – 800 MHz, 1.2V

➢ Energy Models

➢ Cortex – A9, Pandaboard

➢ Micron power model --- extended to incorporate frequency scaling
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Inefficiency vs. Speedup

Bzip2 Gobmk Milc

➢ Running slower doesn't mean system is running efficiently

➢ Higher inefficiency doesn't always result in higher performance

➢ Smart algorithms should search for optimal frequency settings under the 

inefficiency constraint and not just at the inefficiency constraint
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➢ Higher CPI results in higher memory frequency and lower CPU frequency



  

Optimal Frequency Settings

➢ Deliver best performance under given inefficiency budget 

➢ It is expensive

➢ Limited energy performance trade-off options
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➢ Performance cluster: Set of frequency settings that have performance within a 

performance degradation threshold – cluster threshold – compared to the optimal 

performance for a given inefficiency budget.
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➢ Higher cluster thresholds result in higher range of available settings
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Stable Regions

➢ Number of transition decrease with in increase in cluster thresholds

➢ For bzip2, number of transitions are zero at higher inefficiencies

➢ Rapidly changing phases of gobmk result in only a slight decrease in number of 

transitions with cluster threshold
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Energy, Performance Results

➢ Performance improves when tuning overhead is included --- due to decrease in 

number of transitions

No Tuning Overhead
With Tuning Overhead
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Conclusion & Future Work

➢ Inefficiency

➢ Inefficiency and performance trade-offs ---CPU DVFS and memory DFS 

➢ Tracking optimal frequency settings is expensive

➢ Performance clusters and stable regions help reduce the cost of frequent tuning

➢ We are building a system that is capable of tuning multiple components 

simultaneously while executing applications using the models and analysis of the 

performance clusters.
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CPU DVFS and DRAM DFS

➢ The interplay of performance and energy consumption of CPU and DRAM 
frequency scaling is complex.

➢ Increase in DRAM energy is a function of CPU frequency.

➢ Performance improvement with DRAM frequency varies across applications.

CPU 
frequency

Gobmk Bzip2
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Unstable – Leading to 
Transitions

➢ System doesn't need to transition to new set of frequencies only when both CPU 

and DRAM frequencies are stable.
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Stable Regions

➢ Number of transition made by gcc drop significantly at lower inefficiencies --- 

Higher inefficiencies allow the system to choose max-max always

➢ Increase in inefficiency also decreases the transitions --- function of application 

characteristics
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Algorithm Implications

➢ How do higher cluster thresholds and stable regions help energy management 

algorithms?

➢ Algorithms with no knowledge of length of stable regions run periodically to 

find optimal settings --- high overhead

➢ Smart algorithms may choose to tune less often by predicting the length of 

stable regions --- simple prediction mechanisms as proposed by Isci et. al[1] can 

be used

➢ Offline profiling of applications[2] helps in pre determining the length and 

position of stable regions --- can be extended to other applications with similar 

phases

1) Isci et. al Micro 2005
2) Lau et. al International Symposium on Code Generation and Optimization. 2006.
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