Crowdsourcing Access Network Spectrum

Allocation Using Smartphones

http://blue.cse.buffalo.edu
pocketsniffer@blue.cse.buffalo.edu

Jinghao Shi, Chunming Qiao, Dimitrios Koutsonikolas, Geoffrey Challen University at Buffalo

Zhangyu Guan, Tommaso Melodia Northeastern University

Client-Side View Is Important

Without client feedback, AP can either:

Traffic Details Are Needed!

- → Fewer stations == Less Interference? [1, 2] False!
- → Station count is not a good prediction of channel load.

Off-Channel Measurement Overhead

802.11k Radio Resource Management

- → A framework for AP to collect channel statistics from clients.
- → Off-channel measurement interrupts active clients' transmission.

- → We measure the penalty of 802.11k's off-channel measurement by pausing transmission for **t** ms in each **T** ms interval, and measure application level performance with different **T** and **t** (in % of **T**).
- → In experiments, we use a clear channel, place device on top of AP and fix device's transmission rate. Therefore, these results show the penalty in *best-case scenario* (no interference, no unnecessary rate adaptation).

Observations

- → Collecting measurements from active clients is disruptive.
- → Intermittent transmission caused by off-channel measurement incurs unacceptable performance penalty.

Smartphone to the Rescue!

Smartphones are ideal for performing measurement for other nearby active devices.

Near your other active devices.

Mostly idle
Measurements are unlikely to
interfere with normal usage.

System Design

PocketSniffer AP

- → Monitors active link performance
- → Triggers measurements for active clients
- → Adapts channel based on smartphone measurements

PocketSniffer Client

- → Performs measurements on behalf of nearby devices
- → Reports long-term network statistics for health monitoring

Challenges

- → Can smartphones accurately predict channel conditions of nearby devices?
- → Energy overhead of measurement (monitor mode, pcap parsing)
- → Incentives for smartphone participation
- → Validating measurements from untrusted clients
- → Non-cooperative overlapping networks

Similarity of Measurements

Experiment setup

- → Place smartphones in a row with constant separation distance (0.3m).
- → Simultaneously collect packet traces from all smartphones by putting them into *monitor mode*.
- → Analyze various similarity metrics between pairs of packet traces.

Packets in Air
Trace from Device A
Trace from Device B

Trace from Device B

Trace from Device B

Trace from Device B

Each device provides a sample of all packets in air. Interesting trace distance metrics are:

- → Do they see same subset of packets?
 - Packet Jaccard Distance = 1

 Ons? Station Jaccard Distance = $1 \frac{\sin(T)}{\cos(T)}$
- → Do they see same set of stations? Stations?→ Do they see same number of packets?
 - sta $(T_A) \cup \text{sta}(T_B)$ Packet Count Diff = $\frac{\text{abs}(||T_A|| ||T_B||)}{\max(||T_A||, ||T_B||)}$ abs (bytes (T_A) bytes (T_B))
- → Do they see same amount of traffic? Byte Count Diff = $\frac{at}{m}$ Packet Jaccard Distance (PJD) Station Jaccard Distance (SJD) Packet Count Diff (PCD)

 $\text{ff} = \frac{\text{abs}(\text{bytes}(T_A) - \text{bytes}(T_B))}{\text{max}(\text{bytes}(T_A), \text{bytes}(T_B))}$ **Byte Count Diff (BCD)**

Conclusions

- → Although different devices may capture different subset of packets (PJD), the aggregate metrics (SJD, PCD and BCD) converge to small values quickly.
- → Within short physical range (2.4m in our experiments), trace similarity is not correlated with physical distance.
- → Smartphones can accurately predict channel conditions of nearby devices!

References