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ABSTRACT

While great strides have been made in measuring energy con-
sumption, these measures alone are not sufficient to enable
effective energy management on battery-constrained mobile
devices. What is urgently needed is a way to put energy con-
sumption into context by measuring the value delivered by
mobile apps. While difficult to compute, an accurate value
measure would enable cross-app comparison, app improve-
ment, energy inefficient app detection, and effective runtime
energy allocation and prioritization. Our paper motivates
the problem, describes requirements for a value measure,
discusses and evaluates several possible inputs to such a mea-
sure, and presents results from a preliminary (unsuccessful)
attempt to formulate one.

1. INTRODUCTION

Measuring app energy consumption' on mobile devices is
nearly a solved problem. This is due to great strides made in
both generating and validating energy models that deliver
accurate runtime energy consumption estimates [4, 11, 8,
7, 12] and in accurately attributing energy consumption,
even for asynchronous and shared resources [10, 2]. Accurate
energy models bring us closer to the goal of effective energy
management on battery-constrained devices.

But accurate energy measurement alone is not enough, be-
cause even perfectly-accurate measurements of energy con-
sumption are insufficient to answer critical energy-related
questions faced by users and developers, including:

e Which of the following two apps is more energy efficient?
e Will this change to an app make it more energy efficient?
e Is a particular app an energy virus?

e How should the limited energy resources on a given app
be prioritized?

' To avoid confusion between app and energy usage, we use con-
sumption exclusively when referring to energy usage and usage
exclusively when referring to user interaction with apps.
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Unifying all of these questions is one missing component:
a measure of app value, which can be used alone or combined
with energy consumption to compute energy efficiency:

value
energy

Armed with a measure of value we can return to the diffi-
cult questions posed above. By computing efficiency users
can perform apples-to-apples comparisons of apps in order
to evaluate two video conferencing tools, web browsers, or
email clients. Developers can determine whether a new fea-
ture delivers value more or less efficiently than the rest of
their app and better understand the differences in energy
consumption across different users. Measuring value allows a
rigorous definition of an energy virus as an app that delivers
little or no value per joule, and for systems to reward efficient
apps by prioritizing limited resources based on app value or
energy efficiency. After all the progress we have made in
computing the denominator—energy consumption—we be-
lieve that the search for the missing numerator is the most
important open challenge in energy management.

Developing such a measure, however, is difficult. To be
effective it must work across almost the entire spectrum of
smartphone apps, which represent an incredible diversity of
different goals, interfaces, and interaction patterns. It must
also work across a variety of different users with different us-
age patterns. It must be efficient to compute, since it should
not compete for the same limited energy resources that it is
intended to help manage. Ideally it should require little
to no user input, since this will make it burdensome and
error-prone. And to make matters worse, there is no obvi-
ous way to measure ground truth to compare against—even
in a lab. Despite all these challenges, however, even a semi-
accurate value measure would greatly benefit energy man-
agement on battery-constrained smartphones. With users
continuing to report battery lifetime as their top concern
with smartphones [9], we believe this effort is worthwhile.

In this paper we motivate the idea of a value measure
and describe an early failure at developing one. We be-
gin in Section 2 by describing how useful such a measure
would be while also formulating design requirements for the
value measure itself. Section 3 presents an overview of pos-
sible inputs into such a measure and discussion of how each
could be measured and how useful it might be. In Section 4
we present our initial effort at formulating a value measure
based on content delivered through the video display and
audio output—an attempt that we consider a failure based
on the result of a user survey, but a failure that we hope
sheds some light on this difficult challenge.
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2. USES AND REQUIREMENTS

To motivate the need for a value measure, we return to the
questions posed in the introduction and explore each in more
depth. These use cases also help us develop requirements
for our measure, which are summarized at the end of this
section. We begin by exploring the basic question at the
heart of the problem: what is the value of an app?

2.1 Whatis App Value?

All smartphone users intuitively realize that smartphone
apps differ in value—an email client, for example, is prob-
ably more valuable than a app that makes random sounds.
But is it possible to quantify these subjective distinctions
and produce a value measure? To argue that this is possible
we present two experiments that elucidate smartphone app
value in the form of both ordinal and cardinal utilities:

1. You will be required to remove some number of apps from
your smartphone. Order the apps you are currently using
from least important to most important. The N least
important apps will be removed.

2. You will be required to create an energy budget for the
apps you use on your smartphone. During any discharg-
ing cycle, once an app runs out of energy you will not be
able to use it until you plug in your smartphone. Allocate
battery percentages to each app you use.

We plan to engage smartphone users in studies to explore in
more detail which of these approaches is more effective, com-
paring them by comparing users’ levels of satisfaction under
each scenario. In the first experiment we ask users to unin-
stall apps because often apps have a background component
that keeps consuming energy even when the app is no longer
being used. For our value measure we are hopeful that users
will prove capable of assigning cardinal utilities to apps—as
in the second experiment—since this matches most directly
with our proposed value measure and could provide ground
truth for a value measure computed automatically. The sec-
ond experiment also engages users directly in the task of
allocating energy, which is one way that a value measure
could be used. However, if ordinal utilities prove more in-
tuitive we can still compare the ordering generated by our
measure with the ordering generated by users, although the
values of the measure will still require justification.

In either case, we believe that these experiments do sug-
gest the existence of quantifiable value for smartphone apps.
We are not claiming, however, that these setups are the
only way or the right way to measure value. In both cases
low value measures have fairly extreme consequences—the
app is actually removed or rendered unusable. This may
cause users to overvalue essential tools such as communica-
tion apps and undervalue inessential apps that nevertheless
provide them with a great deal of enjoyment such as games.
However, given that our goal is a value measure that can be
paired with and used to allocate energy, and that energy ex-
haustion has such severe consequences on the usability of all
apps, a more extreme experimental setup may be justified.

2.2 Comparing Apps
With some confidence that smartphone app value can be
quantified, we now proceed to motivate the idea of a value
measure by discussing several ways in which it could be used.
The most powerful use of a value measure would be to
compare apps by comparing their energy efficiency, there-

fore overcoming the most critical flaw in current attempts
to compare or categorize apps by their energy consumption
alone [6]. Consider attempting to compare a chat client and
video conferencing app by only measuring their energy con-
sumption. Unless it is terribly written, the chat client will
consume less energy. But this does not mean that it is effi-
cient, or that the video conferencing app is not. Ultimately,
all the energy consumption comparison truly reveals is that
the two apps do different things—which we already knew.

Using energy consumption alone even makes apples-to-
apples comparison of the same app difficult. Given an app
that consumes twice as much energy on Alice’s smartphone
than on Bob’s, the question of why is left unanswered by
pure energy measures. Even if usage time can be used to
normalize the comparison, power consumption alone cannot
incorporate differences due to the different app features or
app configurations used by Alice and Bob.

By computing value and, thus, energy efficiency, we can
overcome these weaknesses. A value measure should allow
us to compare the efficiency of two apps in different cate-
gories based on how efficiently they use energy to deliver user
value. Comparisons within the same app category should
allow users to select the most efficient email client or web
browser. Aggregating results over all users, differences in
app energy efficiency should reflect how well the app is writ-
ten and how well it predicts and adapts to users, not just
differences in the core features it provides. When comparing
two users using the same app, differences in efficiency should
reflect differences in app configurations or app features.

2.3 Evaluating App Changes

A second use for the value measure is helping developers
improve their apps and deliver more value per joule. Today’s
energy profiling tools may be able to show the energy impact
of adding a new feature or changing the way that a particular
feature is implemented, but energy consumption alone is not
sufficient to apply Amdahl’s Law properly to the problem
of improving app energy efficiency. Developers should strive
to make the parts of their app that generate a large amount
of value as energy-efficient as possible, remove parts that
generate little value while consuming a great deal of energy,
and defer work on everything else.

2.4 Detecting Energy Viruses

A measure of app value makes it possible to produce a
rigorous definition of the term energy virus: an app that
produces little to no value per joule. The choice of thresh-
old will require some study, as it is probably impossible to
produce a single efficiency cutoff that cleanly separates ma-
licious apps from ones that are merely poorly-written. This
definition of energy virus can also be made on a per-user
basis. This is important since a non-malicious but poorly-
written app that continues to consume energy even long after
the user has stopped using it—and it has stopped providing
value—functions as an energy virus for that user, but may
not for a user that interacts with it more frequently.

2.5 Prioritizing System Resources

An app value measure should be able to be used to prior-
itize limited system resources, particularly energy but also
storage, memory, networking bandwidth and processor time.
While mechanisms differ, most previous attempts to control
energy consumption rely on some form of rate control which



allocates a rate to each app and enforces that rate by slow-
ing or stopping the app when it exceeds its allocation [1, 10,
13, 3]. However, all of these previous efforts have ignored
the critical question of how rates should be set. No matter
how effective the enforcement mechanisms are, systems that
rely on rates will fail if they provide the same rate to Skype
and Snapchat, or to a very efficient app and an energy virus.

A measure of value can be used alone or in conjunction
with energy consumption to help prioritize limited energy
resources. The simplest approach is to attempt to enforce
an energy allocation based on the relative value assigned to
each app. To encourage apps to be more energy efficient, it
may also be beneficial to weight allocations by their energy
efficiency, providing a boost to apps that provide a larger
amount of value per joule. While there are likely many ways
to combine energy consumption with a value measure in or-
der to prioritize energy consumption, it is not clear that
energy consumption can be prioritized effectively without
some measure of value. The same approach can also be ap-
plied to determine how much of any limited system resource
to allocate to each app, Together these resource allocation
measures can be designed to ensure that high-value apps run
smoothly at the expense of lower-value apps.

2.6 Summary of Requirements

The use cases above give rise to a set of requirements for
a possible value measurement:

It should enable aggregate comparisons between apps across
categories and users.

It should enable comparisons between the same app across
users or inputs, requiring that it be calculable given data
from a single user.

It should enable targeted development by highlighting what
parts of an app generate value and what parts do not.

It should be efficiently computable without unduly con-
suming the resources that it is designed to help manage.

e It should be derived with little to no input from the user.

3. VALUE MEASURE INPUTS

To continue we discuss possible inputs to a value measure
and how to collect them at runtime. In each case, we also
discuss how such statistics could be misleading.

3.1 Opverall Usage

There are a variety of different ways to measure overall
app usage that could be useful inputs to our value mea-
sure. Total foreground time is straightforward to measure,
particularly on today’s smartphones where one app tends to
dominate the display. However, next-generation smartphone
platforms that provide multiple apps with simultaneous ac-
cess to the display will complicate this task by making it
more difficult to determine which app the user is paying
attention to. Number of starts is also a potentially-useful
input, as may be the distribution of interaction times across
all times that the app was brought to the foreground.

While these measures of contact time are intuitive, there
are obvious cases in which they fail, particularly for apps
that spend a great deal of time running in the background
in order to deliver a small amount of useful foreground
information—such as a pedometer app.

3.2 User Interface Statistics

Patterns of interaction may also be useful to observe, and
inputs such as keystrokes and touchscreen events are sim-
ple to track. However, there is more obvious differentia-
tion between app interaction patterns between categories—
users deliver far more keystrokes to a chat client than to a
video player—so interaction statistics will have to be used in
conjunction with complementary value measure components
that offset the differences between high-interaction and low-
interaction apps. This approach also fails in the case where
apps deploy confusing or unnecessary interfaces that require
a great deal of unnecessary interaction to accomplish simple
tasks. Clearly, such apps should not be rewarded.

3.3 Notification Click-Through Rates

Another interesting statistic that could provide insight on
app value is how often users view or click through app noti-
fications. When notifications are delivered but not viewed,
then it is unclear whether the app needed to deliver them.
When clickable notifications—such as those for new email—
provide a way for users to immediately launch the app, the
percentage of notifications that are clicked versus ignored
could be used to at least evaluate how effective the notifica-
tions are, and may also reflect on overall app value.

Notification view and click-through rates also help put
into context the energy used by apps when they are running
in the background. Legitimate background energy consump-
tion should be for one of two purposes: (1) to prepare the
app to deliver more value the next time it is foregrounded,
as is the case when music players download songs and store
them locally to reduce their runtime networking usage; or
(2) to deliver realtime notifications to the user. The effec-
tiveness of background energy consumption to fill caches will
be reflected in the apps overall energy usage, since retrieving
local content is more energy efficient than using the network.
Effectiveness of background consumption to deliver notifica-
tions may be reflected in the rate at which notifications are
viewed or clicked, since a notification that is not consumed
did not need to be retrieved.

However, in some cases apps may do an effective job at
summarizing the event within the notification itself, provid-
ing no need for the user to bring the app to the foreground.
Clearly, such apps should not be penalized.

3.4 Content Delivery

Another approach to measuring value that we feel is
promising is to consider apps as content delivery agents and
measure how efficiently they deliver information to and from
the user. Encouragingly, multiple apps that we have previ-
ously considered can fit into this framework:

e Chat client: the content is the messages exchanged
by users, and efficiency is determined by the amount of
screen time and interaction required to retrieve and ren-
der incoming messages and generate outgoing messages as
replies. Value is measured by the content of the messages.
Efficient chat clients exchange many messages per joule.

e Video player: the content is the video delivered to the
user and efficiency is determined by the amount of network
bandwidth and processing needed to retrieve and render
the video. Value is measured by the information delivered
by the videos and efficient video players present a large
amount of video content to their users per joule.



e Pedometer: the content is the count of the number of
steps presented to the user and efficiency is determined by
the accelerometer rate and any post-processing required
to produce an accurate estimate. Value is measured as the
ability to maintain the step count and efficient pedometers
can achieve more accuracy in computing values per joule.

However, while this framework is conceptually appealing,
fitting each app into it requires app-specific features that
we are trying to avoid: content is measured in messages for
the chat client, frames for the video player, and the step
value accuracy for the pedometer. This raises the question
of whether a single measure of content delivery requiring
no app-specific knowledge can be utilized in all cases. We
explore this question in more detail, as well as differences
between the other value measure inputs we have discussed,
through the experiment and results described next.

4. RESULTS

To examine the potential components of a value measure
further, we utilize a large dataset of energy consumption
measurements collected by an IRB-approved experiment run
on the PHONELAB testbed. PHONELAB is a public smart-
phone platform testbed located at the University at Buf-
falo [5]. 220 students, faculty, and staff carry instrumented
Android Nexus 5 smartphones and receive subsidized ser-
vice in return for willingness to participate in experiments.
PHONELAB provides access to a representative group of par-
ticipants balanced between genders and across a wide variety
of age brackets, making our results more representative.

Understanding fine-grained energy consumption dynamics
required more information than Android normally exposes
to apps. In addition, to explore components of our value
measure we also wanted to capture information about app
usage—including foreground and background time and use
of the display and audio interface—that was not possible
to measure on unmodified Android devices. So to collect
our dataset we took advantage of PHONELAB’s ability to
modify the Android platform itself. We instrumented the
SurfaceFlinger and AudioFlinger components in the An-
droid platform to record usage of the screen and audio, and
altered the ActivityManagerService package to record en-
ergy consumption at each app transition. This allows en-
ergy consumption by components such as the screen to be
accurately attributed to the foreground app, a feature that
Android’s internal battery monitoring component (the Fuel
Gauge) lacks. Changes were distributed to PHONELAB par-
ticipants in November 2013 via an over-the-air (OTA) plat-
form update. The resulting 2 month dataset of 67 GB of
compressed log files represents 6806 user days during which
1328 apps were started 277,785 times, and used for a total of
15,224 hours of active use by 107 PHONELAB participants.

Our analysis begins by investigating several components
of a possible value measure and shows the effect of using
each to weight the overall energy consumed by each app.
Next, we formulate a simple measure of content delivery by
measuring usage of the screen and audio output devices and
test it through a survey completed by 47 experiment partic-
ipants. Unfortunately, our results are inconclusive and open
to several possible interpretations which we discuss. We
present our results in tabular format where for each mea-
sure we rank 10 best performing and 10 worst performing
apps in descending order.

4.1 Total Energy

Clearly, ranking apps by total energy consumption com-
puted by adding all foreground and background energy con-
sumption over the entire study says much more about app
popularity than it does about anything else. Table 1a shows
the top and bottom energy-consuming apps over the en-
tire study. As expected, popular apps such as the Android
Browser, Facebook, and the Android Phone component con-
sume the most energy, while the list of low consumers is
dominated by apps with few installs. This table does serve,
however, to identify the popular apps in use by PHONELAB
participants, and as a point of comparison for the remainder
of our results.

4.2 Power

Computing each app’s power consumption by scaling their
total energy usage against the total time they were running,
either in the background or foreground, reveals more infor-
mation, as shown in Table 1b. Our results identify Facebook
Messenger, Google+, and the Super-Bright LED Flashlight
as apps that rapidly-consume energy, while the Bank of
America and Weather Channel apps consume energy slowly.
Differences between apps in similar categories may begin to
identify apps with problematic energy consumption, such as
contrasting the high energy usage of Facebook Messenger
with other messaging clients such as WhatsApp, Twitter,
and Android Messaging.

4.3 Foreground Energy Efficiency

Isolating the foreground component of execution time pro-
vides a better measure of value, since it ignores the time that
users spend ignoring apps. Table 1c shows a measure of en-
ergy efficiency computed by dividing total foreground energy
consumption by total foreground time of an app. Some sur-
prising changes from the power results can be seen. A num-
ber of apps have remained in their former categories: Bank
of America, which was identified as a low-power app, is also a
highly-efficient app when using foreground time as the value
measure; and Facebook Messenger, which was identified as
a high-power app, is also marked as inefficient. Other apps,
however, have switched categories. ESPN Sportscenter and
Yahoo Mail do not consume much power, but also don’t
spend much time in the foreground; interestingly, none of
the high-power apps looked better when their foreground
usage was considered.

4.4 Content Energy Efficiency

Finally, we use the data we collected by instrumenting the
SurfaceFlinger and AudioFlinger components to compute
a simple measure of content delivery. We measure the audio
and video frame rates and combine them into a single mea-
sure by using bit-rates corresponding to a 30 fps YouTube-
encoded video and 128 kbps two-channel audio, with the
weights representing the fact that a single frame of video
contains much more content than a single sample of audio.
We use this combined metric as the value measure and again
use it to weight the energy consumption of each app, with
the results shown in Table 1d.

Comparing with the foreground energy efficiency again
shows several interesting changes. Yahoo Mail, which fore-
ground energy efficiency marked as inefficient, looks more
efficient when content delivery is considered. While it is pos-
sible that one PHONELAB participant uses it to read email



Rank App Energy (As) Rank App Consumption Rate (A)
1 Android Browser 41052.703 1 Facebook Messenger 0.774
2 Facebook 37268.388 2 Google+ 0.614
3 Chrome Browser 22719.020 3  Super-Bright LED Flashlight 0.600
4 Android Phone 18122.433 4 UB Parking 0.598
5 Gmail 17402.896 5 Android Music 0.446
6 Android Messaging 17342.926 6 Google Search 0.428
7 WhatsApp Messenger 16467.477 7 NFL Mobile 0.386
8 Google Search 15370.252 8 Pandora 0.326
9 Candy Crush Saga 12767.649 9 Starbucks 0.282
10 Android Gallery 11050.363 10 Android News and Weather 0.254
10 Google+ 586.586 10 Chrome Browser 0.099
9 Android Calculator 449.474 9 WhatsApp Messenger 0.095
8 NFL Mobile 344.492 8 Twitter 0.078
7 UB Parking 311.766 7 Yahoo Mail 0.077
6 Super-Bright LED Flashlight 218.870 6 Android Messaging 0.061
5 Starbucks 174.609 5 Skype 0.040
4 Google Keep 174.263 4 YouTube 0.036
3 Dropbox 160.939 3 ESPN SportsCenter 0.021
2 ESPN SportsCenter 108.965 2 The Weather Channel 0.019
1 Bank of America 98.007 1 Bank of America 0.011

(a) Most and Least Energy-Consuming Apps.

(b) Fastest and Slowest Energy-Consuming Apps.

Rank App Name Efficiency Rank App Name Value
1 Bank of America 83.717 1 YouTube 18497.052
2 The Weather Channel 49.861 2 Candy Crush Saga 14051.369
3 Skype 23.779 3 Bank of America 12954.196
4 YouTube 19.880 4 Dropbox 7063.746
5 Android Messaging 12.933 5 Android Messaging 6555.140
6 Android Gallery 9.260 6 Android Gallery 5773.902
7 Android Calculator 9.189 7 Twitter 5610.394
8 Twitter 8.645 8 Android Clock 5085.873
9 Chrome Browser 8.524 9 Yahoo Mail 5083.615
10 10
10 Yahoo Mail 3.287 10 NFL Mobile 1275.985
9 ESPN SportsCenter 3.184 9 UB Parking 1071.529
8 Google Search 1.984 8 Pandora 1049.971
7 Android Music 1.972 7 Facebook Messenger 1012.536
6 Pandora 1.779 6 Android News and Weather 990.386
5 Super-Bright LED Flashlight 1.667 5 Adobe Reader 985.680
4 UB Parking 1.507 4 Google+ 898.589
3 NFL Mobile 1.437 3 Android Phone 748.077
2 Google+ 1.270 2 Google Search 682.005
1 Facebook Messenger 1.199 1 The Weather Channel 571.405

(c) Apps Sorted by Foreground Energy Efficiency.

(d) Apps Sorted by Content Energy Efficiency.

Table 1: Evaluating Components of a Value Measure. PHONELAB data is used to weight overall app energy usage in a variety of
different ways. Omitted results are caused by Android reporting energy consumption for non-apps such as the Android System.

very quickly, it may be more likely that it uses a “spinner”
or other fancy UI elements that generate artificially high
frame rates without delivering much information. The in-
ability to distinguish between meaningless and meaningful
video frame content is a significant weakness of this simple
approach. YouTube and Candy Crush Saga both earn high
marks, which is encouraging given that they are very differ-
ent apps but also might be a result of overweighting screen
refreshes. The Android Clock is also an unsurprising result,
as it requires almost no energy to generate a relatively-large
number of screen redraws in timer and stopwatch mode.

4.5 Survey Results and Discussion

To continue the evaluation of our simple content-based
value measure, we prepared a survey for the 107 PHONE-
LAB participants who contributed data to our experiment.
Our goal was to determine if users would be more willing to
remove inefficient apps, as defined using our content-based

measure. As a baseline, we also asked users about the apps
that consumed the most energy. We used each participants
data to generate a custom survey containing questions about
9 apps: the 3 least efficient apps as computed by our content-
based value measure, the 3 apps that used the most energy
on their smartphone during the experiment, and 3 apps cho-
sen at random. For each we asked them a simple question:
“If it would improve your battery life, would you uninstall
or stop using this app?” To compute an aggregate score for
both the content-based and usage based measures, we give
each measure 1 point for a “Yes”, 0.5 points for a “Maybe”
and 0 points for a “No”. 47 participants completed the sur-
vey, and the results are shown in Figure 1. For each user,
if the score of one measure is higher than the other, it is
considered a “win” for the former.

Overall the results are inconclusive, with the content-
delivery measure not clearly outperforming the straw-man
usage measure at predicting which apps each user would be
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Figure 1: Survey Results. The height of each bar demonstrates how many of the suggested apps the user is willing to remove for
better battery life, with suggestions based on overall usage or our new content-delivery efficiency measure. Our new measure does not

convincingly out-perform the straw man.

willing to remove to save battery life. Given the crude na-
ture of our metric, this is not particularly surprising, and
can be interpreted as a sign that we need a more sophis-
ticated value measure incorporating more of the potential
inputs we have previously discussed. However, on one level
the results are very encouraging: most users were willing to
consider removing one or more apps if that app would im-
prove their battery lifetime. Clearly, users are making this
decision based on some idea of each app’s value—the chal-
lenge is to replicate their choices using the information we
have available to us.

5. CONCLUSIONS

To conclude, we have argued that our inability to esti-
mate app value is a critical weakness that is threatening
our successes at accurately estimating and attributing en-
ergy consumption. We have motivated the need for a value
measure by describing the multiple ways in which it would
aid in the management of energy and other resources on
battery-powered smartphones. Using an energy consump-
tion dataset collected on PHONELAB we have explored sep-
arately several potential inputs to a value measure and de-
termined how they weight energy consumption. Finally, we
have presented results from a failed effort to formulate an
effective value measure. While this first attempt was unsuc-
cessful, we hope to engage the mobile systems community
in this effort so that more sophisticated and successful value
measures can be developed.
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