
maybe We Should Enable
More Uncertain Mobile App Programming

Geoffrey Challen, Jerry Antony Ajay, Nick DiRienzo, Oliver Kennedy,
Anudipa Maiti, Anandatirtha Nandugudi, Sriram Shantharam,

Jinghao Shi, Guru Prasad Srinivasa, and Lukasz Ziarek
Department of Computer Science and Engineering

University at Buffalo

maybe@blue.cse.buffalo.edu

ABSTRACT
One of the reasons programming mobile systems is so hard
is the wide variety of environments a typical app encounters
at runtime. As a result, in many cases only post-deployment
user testing can determine the right algorithm to use, the
rate at which something should happen, or when an app
should attempt to conserve energy. Programmers should
not be forced to make these choices at development time.
Unfortunately, languages leave no way for programmers to
express and structure uncertainty about runtime conditions,
forcing them to adopt ineffective or fragile ad-hoc solutions.

We introduce a new approach based on structured uncer-
tainty through a new language construct: the maybe state-
ment. maybe statements allow programmers to defer choices
about app behavior that cannot be made at development
time, while providing enough structure to allow a system to
later adaptively choose from multiple alternatives. Elimi-
nating the uncertainty introduced by maybe statements can
be done in a large variety of ways: through simulation, split
testing, user configuration, temporal adaptation, or machine
learning techniques, depending on the type of adaptation ap-
propriate for each situation. Our paper motivates the maybe

statement, presents its syntax, and describes a complete sys-
tem for testing and choosing from maybe alternatives.

1. INTRODUCTION
All programmers must deal with uncertainty about run-

time environments. For example, the most appropriate al-
gorithm for a given task may depend on inputs that are un-
known when the function is written, and its performance
may depend on device-specific features that are impossi-
ble for the developer to anticipate. In other cases, real-
world testing may be required to choose between several
approaches, which has led to the popularity of split testing.

Uncertainty is especially problematic for mobile app pro-
grammers. Specific device features, such as accurate GPS

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotMobile’15, February 12–13, 2015, Santa Fe, New Mexico, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3391-7/15/02 ...$15.00.
http://dx.doi.org/10.1145/2699343.2699361

if (plugged == false && batteryLevel < 10) {
// Try to save energy

} else {
// Don’t try to save energy

}

Figure 1: Typical Error-Prone Energy Adaptation. The
threshold is arbitrary and the attempt to conserve energy may
succeed only at certain times, only for certain users, only on cer-
tain devices, or never.

location, may or may not be available. Networks come and
go and their properties change: from fast and free Wifi links
to slower metered mobile data connections. Energy may be
plentiful or scarce, depending on the device’s battery ca-
pacity and the user’s energy consumption and charging pat-
terns. These constantly fluctuating exogenous conditions
make writing effective mobile apps particularly challenging.

Today programmers are forced to anticipate these chang-
ing conditions at development time and implement the re-
quired adaptation themselves. Figure 1 shows an example of
an Android app attempting to adapt to the device’s battery
level by establishing regular- and low-battery code paths,
with the latter attempting to save energy—possibly by uti-
lizing a slower but more energy-efficient algorithm, comput-
ing an approximate result, or deferring the computation.

Unfortunately, this approach has several serious weak-
nesses. The most important is perhaps the least obvious: it
is unclear that the different code paths achieve the desired
result. There may be no differences between the alterna-
tives (neither conserves energy), the alternative designed to
conserve energy may actually consume more due to bugs or
incorrect assumptions, or the outcome may depend on other
factors not considered by the programmer, such as the type
of network the device is currently using.

In addition, attempts at pre-deployment adaptation fre-
quently produce arbitrary decision thresholds. Even if the
two code paths in Figure 1 achieve the desired result, it
is unclear what battery level threshold should trigger the
energy-saving path, whether a single threshold will work for
all users, and whether the threshold should depend on other
factors such as how frequently the app is used.

Finally, the current approach to adaptation fails to sup-
port post-deployment testing. While it is possible to enable
flexibility, runtime adaptation, and split testing using the
languages currently used to program mobile systems, these
tasks require writing large amounts of error-prone boiler-
plate code that retrieves settings from remote servers and
adjusts values at runtime.

http://blue.cse.buffalo.edu
mailto:permissions@acm.org
http://dx.doi.org/10.1145/2699343.2699361


maybe {
// Try to save energy (Alternative 1)

} or {
// Don’t to save energy (Alternative 2)

}

Figure 2: Example maybe Statement. The programmer pro-
vides multiple alternatives. The system determines how to choose
between them.

The root of the problem is that today’s languages force
programmers to be certain at a moment when they
cannot be: at development time. While this problem is
endemic to existing programming languages, when develop-
ing mobile apps it is magnified by the amount of variation
developers must confront. Our solution is simple: (1) pro-
vide developers with a way to express structured uncertainty,
and (2) use the resulting flexibility to enable a large array
of downstream tools for resolving uncertainty by choosing
from the alternatives provided by the developer.

In this paper, we present a novel a language construct
for expressing structured uncertainty: the maybe statement.
Unlike previous approaches to adaptation that relied on
language support, maybe does not encourage programmers
to provide more information about their app to allow the
compiler to improve performance or guarantee correctness.
Rather, maybe allows the programmer to express and struc-
ture uncertainty by providing two or more different alterna-
tives implementing multiple approaches to runtime adapta-
tion. Together, multiple alternatives can produce the same
energy-performance or energy-accuracy tradeoffs described
previously. Conceptually, maybe extends the process of com-
pilation and optimization to include post-deployment test-
ing while also enabling flexible adaptation that may produce
per-user, per-device, or time-varying decisions.

Figure 2 shows how our earlier example can be easily
rewritten using a maybe statement. Unlike the previous ex-
ample, maybe does not rely on the developer to implement
a decision process or correctly predict the effects of each al-
ternative. Instead, the maybe system makes runtime choices
about which alternative to use by measuring the tradeoffs
produced by each alternative and (in this case) activating
an energy-saving alternative when appropriate. When they
are unsure what to do, all developers have to do is provide
alternatives; the maybe system does the rest. maybe allows
developers to respond to uncertainty with flexibility, which
is used to enable testing-driven adaptation.

The rest of our paper is structured as follows. We be-
gin by providing a more complete description of the maybe

statement in Section 2. Section 3 describes several tech-
niques for transforming development-time uncertainty into
runtime certainty. We continue by describing several exam-
ple use cases in Section 4, discussing the implications of the
maybe statement in Section 5, and presenting related work
in Section 6. We conclude in Section 7.

2. MAYBE STATEMENT SEMANTICS
To begin we provide an overview of the maybe statement’s

semantics describing how it allows developers to structure
uncertainty. We refer to each of the values or code paths a
maybe statement can choose from as an alternative.

2.1 Setting Variables
Variables can be used to represent uncertainty. Examples

include an integer storing how often a timer should trigger

// Setting variables
int retryInterval = maybe 1-16;
String policy = maybe "auto", "quality", "perf";

// Function alternatives
@maybe
int myFunction(int a) { /* First alternative */ }
@maybe
int myFunction(int a) { /* Second alternative */ }

// Inlining evaluation code
maybe {
ret = fastPowerHungryAlgorithm(input);

} or {
ret = slowPowerEfficientAlgorithm(input);

} evaluate {
return { "repeat": false,

"score" : nanoTime() + powerDrain() }
}

Figure 3: More maybe Statements

communication with a remote server, or a string containing
the name of a policy used to coordinate multiple code blocks
throughout the app. Figure 3 shows examples of an integer
that can take on values between 1 and 16, and a string that
be set to either “auto”, “quality”, or “perf”.

2.2 Controlling Code Flow
Code flow can also represent uncertainty. Examples in-

clude using multiple algorithms to compute the same result
or multiple code paths representing different tradeoffs be-
tween performance, energy, and quality. Figure 2 shows the
maybe statement in its simplest form, controlling execution
of multiple code blocks. If multiple alternatives are specified,
the system chooses one to execute; if only one alternative is
specified, the system chooses whether or not to execute it.
Single-alternative maybe statements can encapsulate or re-
organize logic that does not affect correctness, but may (or
may not) produce some desirable outcome.

Figure 3 shows several extensions of the maybe statement
providing syntactic sugar. maybe function annotations allow
uncertainty to be expressed at the function level, with the
alternatives consisting of multiple function definitions with
identical signatures. maybe statements that require custom
evaluation logic can include an evaluate block as shown
in the final example. evaluate blocks provide app-specific
a posteriori logic to evaluate the selected alternative. The
evaluate block must return a single JSON object with two
components: (1) a positive integer score, with smaller being
better; (2) and a boolean repeat indicating whether the
system must use the same alternative next time. Hints and
custom evaluation logic can also be applied to other types
of maybe statements through annotations.

While it should be possible to nest maybe statements, it
may require compiler support to provide guarantees about
how maybe decisions are maintained across multiple code
blocks. As we gain more experience with our rewrite-based
prototype, described next in Section 3, we will revisit the
question of nesting in future compiler-based maybe systems.

As a final remark, note that structured uncertainty is
not randomness. Randomness weights multiple options
statically—there is no right or wrong decision. In contrast,
the maybe statement indicates that during any given execu-
tion one alternative may better than the others. The goal
of the system is to determine which one.



3. FROM UNCERTAINTY TO CERTAINTY
While maybe allows programmers to specify multiple alter-

natives, ultimately only one alternative can be executed at
runtime. Either a single, globally-optimal alternative must
be identified, or a deterministic decision procedure must be
developed. Before discussing options for adapting an app
to its runtime environment, we first explain our runtime’s
support for maybe alternatives, including a posteriori eval-
uation and data collection. Then, we discuss how maybe

testing enables a variety of different adaptation patterns.

3.1 Evaluating Alternatives
The optional evaluate block of a maybe statement allows

programmers to provide app-specific a posteriori evaluation
logic. However, in many cases, we expect that maybe state-
ments will be used to achieve common objectives such as
improving performance or saving energy. To streamline ap-
plication development, our current system evaluates maybe

statements without a evaluate block by measuring both
energy and performance. In cases where one alternative op-
timizes both, that alternative will be used—although the
decision may still be time-varying due to dependence on
time-varying factors such as network availability. When al-
ternatives produce an energy-performance tradeoff we are
exploring several options, including collapsing both metrics
into a single score by computing the energy-delay product
(EDP) of each alternative, or allowing users to set a per-app
energy or performance preference.
evaluate blocks can also record other information to aid

adaptation. While the score value is used to evaluate the
alternative, the entire JSON object returned by the eval-

uate block is delivered to the developer for later analysis.
This allows maybe statements to be connected with end-to-
end app performance metrics not visible on the device. We
expect that some evaluate blocks may need to know which
alternative was executed to compute a score—for example,
if the two alternatives produce different quality output. We
are exploring the use of automatically-generated labels to
aid this process.

If a maybe alternative throws an error, the system will
bypass the evaluate block and give it the worst possible
score. By integrating a form of record-and-replay [5], it may
be possible to roll back the failed alternative and retry an-
other. While maybe is intended to enable adaptation, not
avoid errors, the existence of other alternatives provides a
way to work around failures caused by uncertainty. Fault
tolerance may also encourage developers to use maybe state-
ments to prototype alternatives to existing well-tested code.

A final question concerns when a maybe alternative should
be evaluated. Some alternatives may require evaluation im-
mediately after execution. Others may require repeated exe-
cution over a longer period of time to perform a fair compar-
ison. As described previously, evaluate blocks can indicate
explicitly whether or not to continue evaluating the alterna-
tive, and we are determining how to make a similar choice
available to maybe statements without evaluate blocks. In
addition, evaluate blocks can store state across multiple
alternative executions allowing them to evaluate not only
micro- but also macro-level decisions. In both cases, how-
ever, the maybe system allows developers continuous per-
statement control over alternative choice and evaluation as
described in more detail later in this section.

3.2 maybe Alternative Testing
We next describe the pre- and post-deployment testing

that helps developers to design an adaptation policy, a strat-
egy for ultimately selecting between alternatives. While the
maybe system automates many of the tedious tasks normally
associated with large-scale testing, we still provide ways for
the developer to guide and control any step in the process.

3.2.1 Runtime control
To begin, we briefly outline how our Android prototype

implements the maybe statement. We (1) rewrite each maybe

conditional to an if-else statement controlled by a call into
the maybe system and (2) generate a similar setter for each
maybe variable. Variable values and code branches are now
all under the control of a separate maybe service which can
be deployed as a separate app or incorporated into the An-
droid platform. It is responsible for communicating with the
global maybe server to retrieve adaptation parameters for all
maybe-enabled apps on the smartphone. When possible, we
avoid interprocess communication during each maybe deci-
sion by caching decisions in the app, with the maybe service
delivering cache invalidation messages when particular de-
cisions change. The maybe service tracks when alternative
decisions change, runs evaluate evaluation logic when ap-
propriate, and returns testing results to the maybe server.

Because unexpected runtime variable changes could cause
crashes or incorrect behavior, we only alter maybe variables
when they are (re)initialized, not at arbitrary points during
execution. If the app wants to enable periodic readaptation
of certain variables, such as the interval controlling a timer,
it can do so by periodically resetting the value using another
maybe statement. This ensures that maybe variables only
change when expected.

3.2.2 Simulation or emulation
Pre-deployment simulation or emulation may provide a

way to efficiently evaluate maybe statements without involv-
ing users. Building simulation environments that accurately
reflect all of the uncertainties inherent to mobile systems
programming, however, is difficult. To complicate matters,
maybe alternatives may depend on details of user interac-
tion that are difficult to know a priori, particularly when
new apps or features are being developed. So in most cases
we believe post-deployment testing will be required.

However, pre-deployment testing may still be a valuable
approach, particularly when a large number of maybe state-
ments are being used. Since this can explode the adaptation
space, simulations may be able to help guide the developer’s
choices of which maybe statements may have a significant im-
pact on performance and should be evaluated first. Other
maybe statements can be evaluated later or eliminated.

3.2.3 Split testing
Eventually code containing a number of maybe statements

will be deployed on thousands or millions of devices. At this
point, large-scale split testing and data-driven learning can
begin. If the user community is large enough, it may be
possible to collect statistically-significant results even for all
possible permutations of maybe alternatives. For apps with
a small number of users, or a large number of maybe state-
ments, we can collect data for variations of one or several
maybe statements while holding the rest constant. As an
adaptation policy is designed and deployed for the statement



being tested, we begin to vary and measure the next group
of maybe statements. Developers can observe and control
the testing process through a web interface.

Each time a maybe statement is reached or maybe variable
is set, the maybe system records:

• what maybe was reached;

• what alternative was used and why. This includes all en-
vironmental features used to make the decision, as well as
any other available provenance information;

• what evaluate block evaluated the alternative, and the
entire JSON object it returned, including the score;

• and a variety of other environmental and configuration pa-
rameters that the user permits access to: A user identifier;
device and platform information; networking provider and
conditions; location; battery level; and so on.

This dataset is periodically uploaded to the maybe server
and used to drive the adaptation approaches discussed next.

3.2.4 Simultaneous split testing
While large-scale split testing is intended to provide good

coverage over all possible sources of uncertainty we have dis-
cussed, it still normally requires that only one decision be
made at any given time—implying that two alternatives may
never be evaluated under identical conditions. For maybe

statements, however, we are exploring the idea of perform-
ing simultaneous split testing. In this model the app forks
at the top of the maybe statement, executes and scores all
alternatives, and then continues with the outputs from the
best alternative at the bottom of the maybe statement. On
single-core devices this can be done in serial, while the grow-
ing number of multi-core smartphones provides the option
of doing this in parallel. The benefit of this approach is
that each alternative is executed under near-identical condi-
tions. The drawbacks include the overhead of the redundant
executions and the possibility for interference between alter-
natives executing in parallel.

3.3 maybe Endgames
The entire maybe approach is predicated on the fact that

there does exist, among the alternatives, a right decision,
even if it depends on many factors and uncertainties. We
continue by discussing how the dataset generated by post-
deployment testing can be used to determine how to cor-
rectly choose maybe alternatives at runtime.

3.3.1 Simple cases
In the simplest case, testing may reveal that a single al-

ternative performs the best on all devices, for all users, at all
times. In this situation, the maybe system may offer a way
for the developer to immediately cease testing of that alter-
native and even automatically rewrite that portion of code
to remove the maybe statement. However, it is also possi-
ble that the situation may change in the future when a new
device, or Android version, or battery technology is intro-
duced, and so the programmer may also choose to preserve
the flexibility in case it is useful in the future.

The slightly more complicated case is when testing re-
veals that alternatives provide stable tradeoffs between en-
ergy and performance—one alternative always saves energy
at the cost of performance. In this case the system only has
to determine whether to prioritize energy or performance.

While this decision seems simple, it is itself complicated by
differences in battery capacity, charging habits, mixtures of
installed apps, and the importance of the app to each user.
However, the stability of the alternatives’ outcomes means
that once an energy or performance policy decision has been
made, the choice of alternative has also been made.

3.3.2 Static adaptation
In the more complicated cases, testing reveals that the

choice of alternative depends on some subset of the factors
driving uncertainty in mobile systems programming. We
break this group into two subsets, depending on whether
the adaptation is time varying (dynamic) or not (static).
We begin with the second, somewhat easier case.

If the alternative is determined through static adaptation
then the correct decision is a function of some unchanging
(or very-slowly changing) aspect of the deployed environ-
ment. Examples include the device model, average network
conditions, the other apps installed on the device, or user
characteristics such as gender, age, or charging habits. In
this case it is possible that the correct alternative can be
determined through clustering based on these features, and
once determined will remain the best choice for a long time.

3.3.3 Dynamic adaptation
If the choice of alternative depends on dynamic factors

such as the accuracy of location services, the amount of en-
ergy left in the battery, or the type of network the device
is currently connected to, then it is possible that no single
alternative can be chosen even for a single user. Instead,
the maybe system allows developers to evaluate one or more
strategies to drive the runtime alternative selection process.

Note that evaluate blocks are not intended to accom-
plish this kind of adaptation. First, they run after the
maybe statement has been executed, not before. Second, per-
maybe strategy defeats the flexibility inherent to the maybe

approach and would devolve into the fragile decision-making
we are trying to avoid.

Instead, the maybe system allows developers to experiment
with and evaluate a variety of different dynamic adaptation
strategies deployed in a companion library, with the decision
guided by post-deployment testing. For example, if the per-
formance of an alternative is discovered to be correlated with
a link providing a certain amount of bandwidth, then that
adaptation strategy can be connected with that particular
maybe statement.

Observe that in some cases of dynamic adaptation, what
begins as a maybe statement may end as effectively if-

else statement switching on a static threshold—the same
approach we attacked to motivate our system. However,
through the process of arriving at this point we have deter-
mined several things that were initially unknown: (1) what
the alternatives accomplish, (2) that a single threshold works
for all users, and (3) what that threshold is. And by main-
taining the choice as a maybe statement, they can continue
adaptating as devices, users, and networks change.

Another benefit of this approach is that time-varying de-
cisions can be outsourced to developers with expertise in the
particular area affecting adaptation decisions. For example,
by exposing an energy-performance tradeoff through a maybe

statement, a developer allows it to be connected to a sophis-
ticated machine learning algorithm written by an expert in
energy adaptation, instead of their own ad-hoc approach.



3.3.4 Manual adaptation
In some cases even our best efforts to automatically adapt

may fail, and it may be impossible to predict which alterna-
tive is best for a particular user using a particular device at
a particular time. If the differences between the alternatives
are small, then it may be appropriate to simply fall back to
a best-effort decision. However, if the differences between
the alternatives are significant then the maybe alternatives
may need to be exposed to the user through a settings menu.
Fortunately, information obtained through testing can still
be presented to the user to guide their decision. Note that
this requires labeling alternatives in a human-readable way.

3.4 Continuous Adaptation
Finally, even once a decision process for a particular maybe

alternative has been developed, it should be periodically
revisited as users, devices, networks, batteries, and other
factors affecting mobile apps continue to change. To en-
able continuous adaptation, developers can configure maybe

statements to continue to periodically experiment with alter-
natives other than the one selected by the alternative testing
process. Changes in alternative performance relative to the
expectations established during the last round of alterna-
tive testing may trigger a large-scale reexamination of that
maybe statement using the same process described above.

4. EXAMPLE USE CASES
The maybe system is inspired by our frustrations building

smartphone apps that confront the uncertainties inherent to
mobile systems programming. In this section we describe
several examples of how to use the maybe statement drawn
from our own experiences.

4.1 PocketParker App
PocketParker [8] estimates parking lot availability by us-

ing the smartphone’s accelerometer to detect users entering
and leaving parking spots. To do this is an energy-efficient
manner, we initially developed a custom activity recognition
algorithm that duty-cycled the accelerometer to conserve en-
ergy. Towards the end of our development, Google released
their own activity recognition API as a part of their Google
Play Services framework. Based on several small-scale tests
there was no clear winner when comparing the two algo-
rithms, and so we decided to use Google’s implementation
to offload the maintenance burden. Supporting both algo-
rithms, switching between them at runtime, and assessing
the resulting impact on a larger user population would have
required a significant amount of development effort.

Such runtime decisions fit naturally into the maybe frame-
work. Instead of having to choose based on small-scale local
testing, the maybe system can manage the transition from
a mature but app-specific and expensive to maintain algo-
rithm to a potentially-immature but canonical library im-
plementation. As the library implementation improves and
begins to out-perform the hand-tuned alternative, the maybe
system can conduct repeated testing and move more users
over to the library implementation. For some users or on
some devices, the library implementation may never outper-
form the app-specific algorithm, in which cases maybe allows
both alternatives to coexist safely while ensuring that each
user enjoys whichever approach is most effective for them.

4.2 PhoneLab Conductor
PhoneLab is a large scale smartphone platform testbed at

the University at Buffalo [9]. We leverage the Android log-

cat subsystem as a data collection mechanism—experiments
log their data into a system-wide log buffer and we collect
and upload this data on their behalf.

We developed an app called the PhoneLab Conductor for
this purpose which provides a good example of custom maybe

evaluation logic. The goal of our app is to collect data re-
liably while minimizing energy consumption, storage usage,
and metered data usage. With the maybe statement branch-
ing between multiple policies for uploading data—such as
always waiting until the user reaches a plug, or always initi-
ating an upload once the storage allocated is 50% full—the
evaluation logic would provide the worst possible score if
data had been lost, or otherwise a score combining the mul-
tiple attributes the app is trying to minimize.

Due to the uncertainties we faced during development,
we implemented a configuration interface that periodically
retrieves parameters from our server and uses them to re-
configure variable components of the app. This allows us
to control aspects of program behavior such as the amount
of storage space we use on each device for logs, how often
we check for updates, and how to decide whether to up-
load data. Several of these features have proven essential
after deployment—for example, when an upload policy that
worked previously abruptly stopped working on a newer An-
droid version. Development of this app would have been
considerably easier using maybe, which could automate the
process of pushing policies to clients in an energy-efficient
way, and enabling per-user goal-driven adaptation.

4.3 Navjack Sensing Platform
The Navjack project is exploring hijacking in-car navi-

gation devices built from recycled smartphones [3] and de-
ployed in personal vehicles to enable city-scale sensing. Vol-
unteers install a device that acts as a dedicated navigation
aid and car performance monitor but also continuously col-
lects sensor data, utilizing the car’s battery for power, the
car’s driver for maintenance, and inexpensive machine-to-
machine (M2M) data plans for telemetry.

Navjack’s goal is to produce high-quality data in response
to queries while minimizing cellular data usage and car bat-
tery energy consumption. Many uncertainties specific to
this app complicate the process. Some car cigarette lighters
and USB charging docks provide power while the vehicle is
off, while some do not. Users drive their vehicles for differ-
ent durations and at different frequencies. Cellular coverage
varies, altering the energy-per-bit required to offload data.
All of these factors complicate post-deployment adaptation.
maybe statements in Navjack can be used to control the

sampling rate, the set of sensors that are used, and the condi-
tions under which uploads are attempted. This app provides
an example of an adaptation state space that can potentially
get quite large, and so it may provide a good chance to eval-
uate both our ability to perform pre-deployment simulations
to reduce the state space and the success of post-deployment
clustering techniques to identify salient user differences.

5. DISCUSSION
We have yet to determine how natural programmers will

find the maybe statement. Encouragingly, maybe statements
are similar to the ubiquitous if-else statement, and in



many cases can directly replace if-else statements that
attempt runtime adaptation. To coordinate the adaptation
of multiple code paths a single maybe variable can be used
to control multiple if-else statements.

Overuse of the maybe statement may cause problems. If
dependencies exist between maybe statements, the overall
configuration space may expand exponentially, complicating
post-deployment adaptation. Compile-time analysis may be
required to detect dependencies between maybe statements
and encourage programmers to limit their use of maybe to
ensure that downstream optimization remains feasible.
maybe statements should not be used when adaptation can

be refactored into a library. As an example, an app should
not use maybe to decide which network interface to use when
attempting to achieve a common objective, such as maximiz-
ing throughput. This adaptation should be refactored into
a dedicated library, which might use its own maybe state-
ments. Not only is the resulting codebase smaller, but the
total number of maybe statements to test is reduced.

However, the maybe statement represents a fundamentally
different approach to runtime adaptation than systems that
rely on libraries because library development still requires
development-time certainty. While library developers are
more likely to be experts at the type of adaptation their li-
brary performs, we still believe that even the most skilled
programmers will benefit from being able to express struc-
tured uncertainty. maybe allows all developers—including
both app and library writers—to shed the burden of pro-
ducing a single certain approach and instead write uncertain
code containing the flexibility required to enable powerful
data-driven approaches to post-deployment adaptation.

6. RELATED WORK
New systems such as EnFrame [12] reflect growing interest

in managing uncertainty at the language level. EnFrame fo-
cuses on enabling programming with uncertain data, rather
than the runtime adaptation enabled by maybe.

Aspect oriented programming (AOP) [6] aims to increase
modularity through the separation of cross-cutting concerns.
The programmer expresses cross-cutting concerns in stand
alone modules, or aspects, which specify a computation to
be performed as well as points in the program at which that
computation should be performed. Fundamentally, the goals
of AOP and the maybe statement differ, with AOP focusing
on modularity and maybe focused on enabling adaptation by
expressing uncertainty.
maybe shares similarities with language-based approaches

to adapting energy consumption such as Eon [11] and Lev-
els [7]. However, these approaches still require programmers
to express certainty by associating code with energy states,
rather than allowing the maybe system to determine which
energy states are appropriate. maybe can also enable adap-
tation driven by goals other than energy management.

Attempts to enable more adaptive mobile systems date
back to systems such as Odyssey [10]. However, a taxon-
omy of approaches to enabling adaptation on early mobile
systems [1] reflects the focus of early efforts on incorporat-
ing adaptation into libraries that could be used by multiple
apps. As we have pointed out previously, while adaptation
libraries are useful, maybe statements can make them more
powerful by allowing programmers to express uncertainty.

Recent approaches that allow mobile devices to effectively
offload computation by automating client-cloud partitioning

are also related to the maybe statement. Systems such as
Tactics [2] and MAUI [4] used a variety of approaches to en-
abling this form of adaptation but are narrowly-focused on
harnessing opportunities for remote execution. At present
maybe focuses on single-device adaptation, but we are inter-
ested in exploring the ability to use uncertainty to distribute
computation between multiple devices as future work.

7. CONCLUSION
To conclude, we have described the maybe statement: a

new language construct allowing developers to express struc-
tured uncertainty at development time and for that uncer-
tainty to be resolved through later testing and adaptation.
We are in the process of building a prototype of the maybe

system for Android smartphones.

Acknowledgments
Students and faculty working on the maybe project are sup-
ported by NSF awards 1205656, 1409367, and 1423215. The
maybe team thanks the anonymous reviewers and our shep-
herd, Mahadev Satyanarayanan, for their feedback.

8. REFERENCES
[1] Badrinath, B., Fox, A., Kleinrock, L., Popek, G., Reiher, P.,

and Satyanarayanan, M. A conceptual framework for network
and client adaptation. Mobile Networks and Applications 5, 4
(2000), 221–231.

[2] Balan, R. K., Satyanarayanan, M., Park, S. Y., and Okoshi, T.
Tactics-based remote execution for mobile computing. In
Proceedings of the 1st international conference on Mobile
systems, applications and services (2003), ACM, pp. 273–286.

[3] Challen, G., Haseley, S., Maiti, A., Nandugudi, A., Prasad,
G., Puri, M., and Wang, J. The Mote is Dead. Long Live the
Discarded Smartphone! In Proc. 15th Workshop on Mobile
Systems and Applications (ACM HotMobile 2014) (Feb. 2014).

[4] Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A.,
Saroiu, S., Chandra, R., and Bahl, P. Maui: making
smartphones last longer with code offload. In Proceedings of
the 8th international conference on Mobile systems,
applications, and services (2010), ACM, pp. 49–62.

[5] Gomez, L., Neamtiu, I., Azim, T., and Millstein, T. Reran:
Timing-and touch-sensitive record and replay for android. In
Software Engineering (ICSE), 2013 35th International
Conference on (2013), IEEE, pp. 72–81.

[6] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., marc Loingtier, J., and Irwin, J. Aspect-oriented
programming. In ECOOP (1997), SpringerVerlag.

[7] Lachenmann, A., Marron, P. J., Minder, D., and Rothermer,
K. Meeting lifetime goals with energy levels. In ACM
Conference on Embedded Networked Sensor Systems
(SenSys’07) (November 2007).

[8] Nandugudi, A., Ki, T., Nuessle, C., and Challen, G.
Pocketparker: Pocketsourcing parking lot availability. In
Proceedings of the 2014 ACM International Joint Conference
on Pervasive and Ubiquitous Computing (New York, NY, USA,
2014), UbiComp ’14, ACM, pp. 963–973.

[9] Nandugudi, A., Maiti, A., Ki, T., Bulut, F., Demirbas, M.,
Kosar, T., Qiao, C., Ko, S. Y., and Challen, G. Phonelab: A
large programmable smartphone testbed. In Proc. 1st
International Workshop on Sensing and Big Data Mining
(SenseMine 2013) (November 2013).

[10] Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton,
J. E., Flinn, J., and Walker, K. R. Agile application-aware
adaptation for mobility. In SOSP ’97: Proceedings of the
sixteenth ACM symposium on Operating systems principles
(Saint Malo, France, 1997), pp. 276–287.

[11] Sorber, J., Kostadinov, A., Brennan, M., Garber, M., Corner,
M., and Berger, E. D. Eon: A Language and Runtime System
for Perpetual Systems. In ACM Conference on Embedded
Networked Sensor Systems (SenSys’07) (November 2007).

[12] van Schaik, S. J., Olteanu, D., and Fink, R. Enframe: A
platform for processing probabilistic data. arXiv preprint
arXiv:1309.0373 (2013).

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1205656
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1409367
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1423215

	Introduction
	maybe Statement Semantics
	Setting Variables
	Controlling Code Flow

	From Uncertainty to Certainty
	Evaluating Alternatives
	maybe Alternative Testing
	Runtime control
	Simulation or emulation
	Split testing
	Simultaneous split testing

	maybe Endgames
	Simple cases
	Static adaptation
	Dynamic adaptation
	Manual adaptation

	Continuous Adaptation

	Example Use Cases
	PocketParker App
	PhoneLab Conductor
	Navjack Sensing Platform

	Discussion
	Related Work
	Conclusion
	References

