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Abstract—Indoor location information plays a fundamental
role in supporting various interesting location-aware indoor
applications. Widely deployed WiFi networks make it feasible
to perform indoor localization by first establishing a received
signal strength (RSS) map covering the whole area based on a
signal propagation model, then determining a location from an
online RSS measurement given the RSS map. However, challenges
remain in practical deployments, due to inaccurately estimated
RSS values in the RSS map and insufficient number of access
points (APs) in large indoor areas. To address these challenges, we
develop a robust, cost-effective and scalable localization system
(REAL). Our approach takes the error from the indoor radio
signal propagation model into consideration. It also exploits
information of unobserved APs at a given location and an optimal
clustering method in the location searching phase. Our real-
world experimental results demonstrate that REAL achieves
considerable localization accuracy at a very low training cost
even for a large indoor area. In addition, the results show that
our scheme can also be effectively applied to Bluetooth networks
with sparse signal coverage.

I. INTRODUCTION

Indoor location information is a fundamental part of mobile
and ubiquitous computing, supporting a variety of interesting
applications such as location-aware advertisements for shop-
pers and indoor navigation for the blind. Although the satellite-
based global positioning system (GPS) provides efficient and
scalable services to mobile users in outdoor cases, it is not
suitable for establishing indoor location because the signal
is attenuated, reflected, and scattered by complicated indoor
environments. Therefore, how to design and implement a
scalable and cost-effective indoor localization system has been
extensively studied over the last decade.

Positioning algorithms can be coarsely classified into two
categories: trilateration and fingerprinting. The basic idea
of trilateration is to estimate the position of an object by
measuring its distance from at least three known reference
points. However, the accuracy achieved through trilateration
is unacceptable without deploying extra infrastructure such as
ultra wideband (UWB) signals. In this paper, we focus on the
fingerprinting approach to avoid such overhead. Fingerprinting
usually contains two phases: an off-line training phase of
collecting features (e.g., a vector of RSS measurements from
various APs) at known locations to establish an RSS map; and
an online localization phase of estimating a location based on
the RSS map and an online RSS measurement.

Despite considerable progress in this area, many challenges
remain—particularly for deployments spanning large areas.

More specifically, most validation experiments are either car-
ried out in small areas [8][11] or done under the assumptions
that more than three reference base stations can be seen at
all locations [12]. In contrast, data collected in our building
shows that at 20% of the locations, the number of distinct
physical WiFi APs seen by a device is lower or smaller than
three. The case is worse for a Bluetooth network deployed in
the same area with similar density: more than three Bluetooth
beacons are only seen at 45% of measured locations due to
a shorter communication range. Another major challenge is
that in order to improve location accuracy, some schemes
require collecting a large set of training locations, which
is labor and time intensive. Such schemes may be feasible
for a small indoor area but not practical for a large one.
The works in [8][9][11] try to reduce the training effort
by predicting RSS values instead of taking measurements
manually. However, they rely on inaccurately predicted RSS
values in the location searching phase and ignore the error
introduced from propagation model. Finally, existing schemes
take two extreme directions in searching for a closest match
from the RSS map: they either find only one RSS vector from
the map and use the corresponding location as the output
[8]; or they find a largest cluster including all the candidate
locations and return the weighted average coordinates as the
result [11]. Both scenarios do not consider the modeling error
and no prior studies have addressed what is the optimal cluster
size.

To address these challenges, we design a low-cost and robust
indoor localization system called REAL. REAL builds up an
RSS map with only a few training locations. It estimates the
location based on the RSS map by considering the modeling
error, utilizing information of APs which are invisible at a
given location, and an optimal clustering method. The major
novelties and contributions of this work are:

• We propose a probabilistic approach to consider the error
introduced from modeling signal propagation. Our evaluation
results show that our approach outperforms the case when
estimated RSS is directly used for comparison. We also
develop a new location searching algorithm by utilizing both
redundant AP information and a clustering method, to reduce
the influence of the modeling error.

• We evaluate the effectiveness of our system in a real
environment, the 3750m2 3rd floor of Davis Hall at University
at Buffalo. In this WiFi network, only 80% locations see more
than three APs. The evaluation results show that even with a
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small set of 5 training locations, we are still able to achieve a
median error of 4.78m.
• We show that our scheme can effectively work with 12

Bluetooth beacons sparsely deployed in the same area, where
55% locations see fewer than three beacons. Our results show
that with only 39 training locations, we can achieve a median
error of 5.56m.

The rest of the paper is organized as follows. In Section II,
we provide the background about RSS mapping techniques.
In Section III, we introduce our localization system REAL,
and its mapping technique and improved location searching
algorithm. We present our performance evaluation in a real
building in Section IV. Finally, we conclude our work in
Section V.

II. RELATED WORK

Trilateration techniques depend on an accurate estimation
of distance, however, estimating distance by utilizing RSS
in 802.11 networks is quite inaccurate due to multipath,
refraction or shadow fading. The work in [1] has shown that
distance estimation falls between 2/3 and 3/2 of the actual
distance only 69% of the time. The large ranging error will
greatly affect the accuracy of trilateration solutions. In order
to acquire accurate ranging information, research has focused
on deploying additional infrastructure to estimate distances.
UbiSense [2] and the work in [3] relied on UWB signals
to calculate distance by estimating the time of arrival (TOA)
of the direct signal path. Although remarkable performance
has been achieved, the complexity and specific hardware
requirement make such systems impractical to deploy.

Previous indoor fingerprinting systems have exploited the
possibility of various technologies other than 802.11 networks.
For example, Active Badge [7] and EIRIS [6] employed
infrared signals to label rooms in an office environment.
Cricket [4] and the work in [5] built an infrastructure that
deploys beacons at various locations utilizing ultrasound sig-
nals. Although such research has shown promising results,
their limited applicability to small indoor environments and
significant cost during the learning phase makes them poorly-
suited to be scaled to larger areas. However, with the growing
smartphone market and parallel massive deployment of 802.11
networks, performing localization based on RSS is a promising
approach because it exploits existing wireless networks and
saves the cost of deploying other infrastructure. RADAR [8]
system is a pioneering work in establishing an RSS map where
RSS measurements from three APs are collected at known
locations. RADAR proposed two approaches to establish the
RSS map: manually measured, or theoretically estimated based
on a propagation model. The first strategy relies on manual
resources to collect the ground truth in order to acquire an
accurate mapping, while the second strategy exploits a sim-
ple propagation model with empirical configured parameters.
Manual mapping slightly outperforms theoretical estimation in
terms of localization error but theoretical estimation dramati-
cally reduces the cost to perform the site survey, which makes
practical deployment over a large space possible.

Several schemes have since improved upon RADAR, in
either the map-generating phase or the searching phase. Horus
[9] utilized stochastic interpretation in building the RSS map
and a probabilistic technique to search for the best-matched
location, however, the training cost is high, with measurements
taken every 1.5 meters. To reduce the pre-deployment effort,
TIX [10] modified APs to measure the RSS from neighboring
APs, and linear interpolation was then applied to recover
the RSS from each AP at every location. However, this
system requires knowledge of AP transmission power and
modification of commercial APs. Chintalapudi et al. [12]
proposed a localization system called EZ which requires fewer
RSS measurements than most existing schemes. However,
EZ depends on boundary information collected from GPS,
which is time-consuming especially in a large indoor area.
ARIADNE [11] exploited a more sophisticated ray-tracing
model and simulated annealing to learn the parameters, but this
approach depends on the placement of APs and assumption
that all APs can be detected at any location in a small space.

In terms of location searching, one typical comparison
metric is the least mean square error (LMSE) of the RSS
measurement vector. Intuitively, a smaller MSE between two
RSS measurement vectors indicates a shorter distance between
them. Pandey et al. [14] use the second smallest MSE as the
comparison metric. ARIADNE proposed a clustering approach
that groups locations based on MSE—the cluster with the
largest size is returned as the final result. However, these
approaches do not work effectively when there are multiple
locations with similar MSEs. Additionally, they rely on inac-
curate estimated RSS values and ignore the error introduced
from modeling the relationship between RSS and distance.

To summarize, although considerable improvements have
been achieved regarding indoor localization over 802.11 net-
works, none has achieved an impressive performance for large
indoor cases while preserving acceptable accuracy, low pre-
deployment cost, and robustness at the same time. Our goal is
to design an indoor localization system that overcomes these
shortcomings through a set of key features: a) low complexity
and cost, the system does not require additional infrastructure,
reconfiguration of the existing 802.11 networks, or installation
of any other hardware (such as UWB) on commercial-off-the-
shelf (COTS) devices such as smartphones, tablets or laptops,
b) robustness, the system is adaptive to environmental changes
such as movement of furniture or people, c) scalability, the
system is easily adaptable to even larger areas and works under
infrastructure using similar radio signals such as Bluetooth and
ZigBee, d) accuracy, the system offers excellent performance
compared with existing approaches in terms of deployment
cost and size of the localization space.

III. LOCALIZATION WITH REAL

We utilize the same propagation model as in [13], which is
defined as follows:

RSSd = F(d,Nob) (1)
= RSS0 + αlog10(d) + σNob (2)



where RSSd represents the RSS reading at distance d from the
AP, RSS0 is the RSS right at the AP, α and σ correspond to the
signal fading coefficient due to direct path distance and walls
respectively, and Nob represents the number of walls on the
direct path. This model assumes that only walls contribute to
signal attenuation caused by obstacles, and does not consider
shadow fading factors from refraction and reflection.

REAL contains an off-line training phase and an online
localization phase. During the off-line phase, a few RSS
measurements are collected at known locations, they are used
to train a propagation-based distance-to-RSS model and build
an RSS map covering the whole area of interest. During the
online phase, we utilize the constructed RSS map to determine
the location given an online RSS measurement. Specifically,
we rely on a probabilistic method to find candidate locations
with high posteriori probability, and then we exploit redundant
AP information and a clustering algorithm to robustly estimate
the target’s location from these candidates.

A. Establishing the RSS Map (Off-Line Phase)

1) Training the propagation based model: In this step, RSS
samples and their corresponding location coordinates are col-
lected in order to learn the parameters RSS0, α, and σ. Math-
ematically, given a training set {rsstrain, Location(x, y)}M
of size M , where rsstrain indicates an RSS measurement
and Location(x, y) is the corresponding 2D coordinates, we
obtain the parameters RSS0, α, and σ in formula (2) by
minimizing the following objective function:

E(RSS0, α, σ) =
∑
M

(rsstrain −FRSS0,α,σ(d,Nob))
2 (3)

where ε is the error introduced by the simple log distance
propagation model considering walls. We assume that the
coordinates of all APs are already known, and therefore the
distance d to each AP can be calculated. To compute the
number of walls on the direct path from a receiver to an
AP, we have written a program to analyze graphic floor plan.
This program searches for any line element with thickness
and length above a certain threshold which is recognized as a
wall. A list of all walls specified by their length and location
is returned. Every time when two locations are given, we are
able to calculate Nob between them by going through this list.

We use the “BFGS” [15] algorithm to solve this optimiza-
tion problem. Restrictions for RSS0, α, and σ are applied
to guarantee that the solutions are physically meaningful.
Specifically, RSS0 should not be greater than the maximum
RSS ever received, and the value of α and σ are less than zero
because RSS is attenuated due to the increase of distance and
existence of walls. After RSS0, α, and σ are obtained, the
modeling error is also computed and then used to calculate
the probability of seeing an online RSS measurement given a
trained propagation model. Additional details are discussed in
the online phase section.

2) Building the radio map: After the propagation model is
learned, we are able to utilize RSS0, α, and σ to calculate the
estimated RSS from a certain AP at any location, as long as the

coordinates of this location and target AP are available. First,
we divide the floor map into G small grids evenly distributed
over the map. Then, since we know the coordinates at each
grid point location, we are able to compute the distance d
to each AP and Nob on the direct path. Finally, we plug d
and Nob into formula (2) to estimate the RSS vector at every
grid point. Note that the radio cards currently installed on
smartphones cannot detect signals below a certain threshold.
We utilize a simple piecewise function which sets the RSS
value to minRSS when it is below the threshold. Here, we
use the minimum RSS value collected in the training set as
minRSS. In other words, our distance-to-RSS relationship is
defined as follows:

F(d,Nob) =

{
RSS0 + αlog10(d) + σNob, if > minRSS

minRSS, if ≤ minRSS
(4)

Therefore, an RSS map denoted by {RSSg}G is established
covering the entire area of interest without further man-
ual effort. Specifically, for each grid point g, its estimated
RSS vector is defined as RSSg =

[
rss1g, rss

2
g, . . . , rss

N
g

]
,

rssig, i ∈ N represents the predicted RSS value from APi,
where N is the number of total APs in the area.
B. Location Searching (Online Phase)

During the online phase, our objective is to estimate the
current location (x, y) given its online RSS measurement
vector: RSSmeasure =

[
rss1m, rss2m, . . . , rssnm

]
, based on

the RSS map RSSg of size G built in the off-line phase.
Specifically, RSSmeasure contains signal readings from n
different APs, rssim is the actual RSS reading from AP i,
and it is obvious that n ≤ N . A mathematical expression for
making a decision is therefore the following:

find g ∈ G, argmaxP (RSSmeasure|RSSg) (5)

1) Computing likelihood for each grid point: At grid point
g ∈ G, the likelihood of seeing an RSS vector given the
propagation model is the following:

P (RSSmeasure|RSSg) =

i∈apset∏
i

p(rssim|rssig) (6)

where rssim represents the online RSS value from APi and
rssig is the predicted RSS from the same AP at grid point
g, apset is the set of APs utilized to compute the likelihood.
Since each AP is independent from the others, the likelihood of
seeing an RSS measurement vector is the product of likelihood
for obtaining a single RSS reading from each AP in the apset.

To determine the probability p(rssim|rssig), we define that
rssim follows a Gaussian distribution with mean rssig and
standard deviation εi at each AP i:

rssim ∼ N (rssig, ε
2
i ) (7)

p(rssim|rssig) =
1

εi
√
2π

e
−

(rssim−rssig)2

2ε2
i (8)

where N represents Gaussian distribution, and εi denotes the
error between the estimated RSS value from the propagation



model and the real measurement for AP i. Specifically, εi can
be calculated after RSS0, α, and σ are learned in the training
phase. By minimizing the objective function (3), we are
actually finding the propagation model that is best tuned with
the training set. Note that most previous works have relied on
reconstructed RSS vectors and compared online RSS readings
with them directly, ignoring the error introduced from the
RSS-to-distance model. In contrast, our probabilistic approach
provides a robust way to capture both the shadow fading effect
from other resources and the error from modeling.

2) Refining the estimated location: When the number of
observed APs is smaller than three, it is highly likely that
potential candidate grid points will be symmetric around an
AP or to a symmetric line (e.g., a line connecting two APs),
making it difficult to reach a final decision. Fig 1 shows a heat
map representing the likelihood (normalized to 1 over all the
grid points) of seeing a certain RSS measurement at all the
grid points in the WiFi network; the lighter the grid point’s
color, the more likely the target is located at such grid location.
The blue triangles represent the APs observed in this online
RSS measurement and the black cross is the actual location.
This figure indicates that when only two APs are observed,
there are multiple areas with yellow color in the map and they
are symmetric around the line connecting the two observed
APs. To reduce the influence from ambiguous areas, we exploit
redundant AP information and a new clustering method to
obtain a better estimation of the target’s real location.

Fig. 1: Heat map showing possible locations
when using O-apset

Fig. 2: Heat map showing possible locations
when using R-apset

a) Adding redundant AP information: Here, we propose
a method to reduce influence from symmetry by adding some
redundant APs to the original observable O-apset. A redundant
AP helps to eliminate one or more symmetric areas that are not
in accordance with the constraint applied by it. In Fig. 2, the
light colored zones are considerably reduced after extra APs
(blue flipped triangles) are taken into consideration. Specifi-
cally, we first find the candidate grid points whose likelihood is
above a certain threshold. With the coordinates of APs already
known, we then can find the top three geometrically-closest
APs for each candidate grid point, referred to as localizable
AP set. Finally, all these localizable AP sets are combined with
the O-apset and used as a new apset to recalculate likelihood
in formula (6). In order to compute (8) when no rssjm from
an invisible APj (APj ̸∈ RSSmeasure) is actually received,
we perform a small trick by padding this missing value with
minRSS. Naturally, there also exists an extreme case in
which the whole AP set N will be utilized to recalculate the

likelihood. Similarly, all the missing RSS values are padded
with minRSS. In the evaluation section, the performance
using three different apset selection scenarios is studied: a) the
O-apset—the originally observed, b) the R-apset—the original
AP set added with some redundancy, and c) the A-apset—the
complete AP set covering the whole area.

However, even though we add redundant AP information
to compute likelihood, the ambiguity caused by symmetry
remains. In Fig. 2, although the likelihood of each grid point
is recalculated over R-apset, there are still multiple light
areas surrounding the AP in the top left corner. This is
because when we take the error from the propagation model
into consideration, the APs with larger modeling error are
becoming less determinate. As a result, there are more possible
regions appearing in the heat map. Therefore, we utilize a
clustering method to further increase the localization accuracy.

b) Clustering: Given the likelihood for each grid point,
an intuitive decision can be easily made by picking the one
with the highest likelihood. However, this simple solution
does not consider the likelihood of its neighbors. Since the
probabilities of grid points in a small area are usually very
similar, it is not reasonable to consider only the maximum
grid candidate when its value is not significantly greater than
that of its neighbors. Therefore, we use clustering to increase
the localization accuracy. More specifically, we first find the
candidate grid points with the top-k likelihood value. Then
we classify these candidate grid points into several clusters
where each cluster has a maximum radius r, we also define
the signature likelihood of a cluster as the average likelihood
of all grid points in it. Finally, we select the cluster with the
largest signature likelihood, and the returning coordinates are
defined as a weighted average of the coordinates of all grid
points in the cluster:

(x, y) =

g∈cluster∑
g

(P ∗(RSSmeasure|RSSg)(xg, yg)) (9)

where P ∗(RSSmeasure|RSSg) represents the probability
normalized to 1 over the grid points in the same cluster,
and (xg, yg) are the coordinates of grid g. The value of r is
crucial—if r is too small, then this approach will degrade to
picking a single grid point with the maximum likelihood, but
if r is too large, candidate grid points could fall into the same
cluster. If these candidate grids are symmetric around a certain
point (for example, the light areas are symmetric around the
AP in the top-left corner in Fig. 2), the weighted average of
these coordinates will be located at such center point, causing
unnecessary error. In our experiment, r is empirically set at 6
meters as a constant parameter, the influence of r is further
discussed in the evaluation section.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

We conducted two sets of experiments on the 3rd floor of
Davis Hall at SUNY at Buffalo using WiFi APs and Bluetooth
beacons. Fig. 3 depicts the overall floor plan of size 76m ×



85m, including the location of all 14 WiFi APs denoted by
triangles. Although the signal coverage of this WiFi network
is fairly dense, one can receive RSS readings from 3 or more
APs only at 80% locations. In order to verify the effectiveness
of our approach even with a sparse coverage, we also deployed
a Bluetooth network of 12 Bluetooth beacons denoted by blue
dots. Due to their low transmission power, only about 45%
locations are covered by 3 or more beacons.

RSS values of 389 locations are collected as ground truth
data and they are depicted as green nodes in Fig. 3. All RSS
values are collected with a Samsung Nexus 5 smartphone
running Android version 4.4 (“KitKat”). At each location,
WiFi network RSS readings are collected by scanning for
two seconds, while a total of four seconds is used to measure
Bluetooth RSS due to its longer beacon interval. If multiple
RSS samples are received during each scan, the mean value of
the samples is used. At each location, the 2D coordinates (x, y)
relative to the origin (depicted in Fig. 3) are also collected by
a measuring tape. Note that in each experiment, we use only
a small subset of the entire location set for training, saving
the rest for validation. When establishing the RSS map, we
set the grid size to be 0.5 meters, a granularity that provides
enough precision for localization.

Fig. 3: Floor plan of Davis 3rd floor Fig. 4: Localization error CDFs of MSE vs.
REAL for WiFi and Bluetooth

B. Performance Evaluation

In this subsection, we will first evaluate the effectiveness
of our probabilistic approach by comparing it with MSE [14],
keeping the selection of apset and cluster radius the same.
MSE can be regarded as a special case of our probabilistic
approach, where it assumes that εi for any AP i is the same and
has value 1. However, in our approach εi should be different
if the AP is not the same, and this value can be computed
from the propagation model. In this experiment, we randomly
pick 10% of the location points as a training set, setting aside
the remaining 90% for validation. Fig. 4 presents the CDF of
the localization errors for these two approaches: for the 802.11
network (black lines), we observe that our approach is slightly
better than the LMSE metric, reducing the mean error from
4.94m to 3.88m and the median error from 3.35m to 2.62m.
For the Bluetooth network (blue lines), the improvement is
more significant: the median and mean error are reduced by
2.18m and 2.5m respectively. This is because the Bluetooth
signal range is shorter and less stable relative to WiFi, and
our probabilistic approach considers modeling errors and thus
provides a more robust and accurate comparison metric.

We also study the influence of apset by comparing three
different scenarios: (a) the original observable APs (O-apset);
(b) a combination of the original AP set with serveral redun-
dant APs (R-apset), and (c) all the APs discovered in the entire
floor map (A-apset). We plot the CDF of localization error for
WiFi and Bluetooth respectively as shown in Fig. 5 and Fig.
6. Adding redundant APs improves localization accuracy for
both networks; however, the performance of second (R-apset)
and third (A-apset) scenarios is quite close, which means that
utilizing distant APs does not increase localization accuracy.
Fig. 7 shows the detailed statistics of error reduction from O-
apset to R-apset for both networks, classified by the number
of observed APs. The bar height and the number on the top
of each bar represent the percentage of validation set and
the mean error reduction from each category respectively.
We observe that the overall mean error reduction is 1.78m
for WiFi, while the Bluetooth network sees a much higher
improvement of 5.39m. For Bluetooth, improvement occurs
primarily on RSS measurements when fewer than three APs
are observed. Even when only one beacon is observed, our
approach effectively reduces error by 9.81m. This result is in
accordance with our observation that the probability of seeing
fewer than three APs is higher for the Bluetooth network.

Fig. 5: Comparison of using different AP
selection scenario in WiFi network

Fig. 6: Comparison of using different AP
selection scenario in Bluetooth network

Fig. 8 shows the box plot of localization error for different
cluster radii, where 0 means no clustering is applied. The
experiment is conducted with 10% locations as training set and
it is computed on a server. We find that the localization error is
reduced when clustering is used (r > 0). The median error and
confidence interval decrease at first but then increase when r
grows larger. This confirms that a large r will produce random
errors but a small r cannot capture the full effectiveness of
clustering. According to the figure, we set r to be 6m.

Fig. 7: Error reduction from O-apset to R-
apset for WiFi and Bluetooth networks

Fig. 8: The influence of cluster radius



C. Cost-Effectiveness of Off-Line Learning

In this subsection, we evaluate the cost-effectiveness of the
off-line training phase by varying the size of the training set.
We compare our system with support vector regression (SVR).
We use a regression model with Gaussian kernel to relate
location coordinates to its RSS measurement:

(x, y) ∼ SV R(RSS) (10)

RSS and (x, y) are the RSS measurement vector and 2D
coordinates at a location. In order to avoid using overlapped
locations for training, we randomly divide the original location
set into ten equal parts. For each run we pick out one part,
add it to the training set, and leave the rest for validation. The
same training set is also used to train the SVR model and
predict the (x, y) pair from the RSS vector. Fig. 9 is the box
plot of localization errors when we vary the training set from
10% to 90% of 389 locations. We find that when only 10% of
the data are used for training, our approach outperforms SVR
when 90% of data is used. For SVR, localization accuracy im-
proves significantly when more locations are used for training,
however our approach improves very little (mean error from
3.84m to 3.53m) when we increase the training set. In other
words, REAL does not rely on a large training set, since the
probabilistic approach and clustering method produce robust
location searching results although the model is not perfect.

We further reduce the size of training set to determine
its lower bound. In order to get every AP trained, we pick
the locations which are uniformly distributed in the area. For
each size we repeat the experiment for 10 times to reduce
the influence of randomness. Fig. 10 shows the box plot of
the averaged localization error. We observe that even with
only 3 training locations, REAL is still able to achieve a
moderate localization median error of 6.25m. The median
error reduces to 4.78m when the training size is 5, but after
that the improvements become smaller, reaching 3.41m when
15 locations are used. It shows that REAL can function well
with 1 ∼ 2 training locations per 1000m2.

Fig. 9: Comparison of REAL vs. SVR using
different size of training set

Fig. 10: Lower bound of the training set size
for REAL

Finally, we compare REAL with other typical systems in
terms of the training cost (T-cost) and localization median
error, where the T-cost is defined as the number of training
locations (T-locs) needed for every 1000m2. As can be seen
from Table I, Horus achieves the minimum localization error
at a very large training cost. RADAR has a lower T-cost and
uses fewer APs than Horus but results in a larger error. EZ

demonstrated that a decent accuracy can be obtained for a large
indoor area with a very low T-cost (but it requires boundary
GPS information) and a sparse coverage with only a few APs.
Compared to EZ, REAL achieves a smaller localization error
of 4.78m with an even lower T-cost of only 5 locations. In
addition, REAL can also keep the error under 5 meters at a
very low T-cost even with a sparser AP coverage (i.e., with
only 9 APs in the second row), because we make the best
of limited AP coverage resources by further exploiting the
constraints applied from APs that are not detected as well. To
conclude these comparisons, REAL proves to be a scalable
and practical indoor localization system.

TABLE I: Comparison with other systems

System T-locs # AP Area(m2) T-cost Error(m)

REAL 5 14 3750 1.3 4.78

REAL 14 9 3750 3.7 4.87

Horus 688 21 1768 389 0.46

RADAR 70 3 979 71.5 2.13

EZ 1011 12 11466 8.8 5.5

V. CONCLUSION
In this paper, we have proposed a robust, cost-effective

and scalable localization system. We developed a probabilistic
approach considering the inaccuracy of the propagation model
to calculate the likelihood of seeing an RSS measurement in
the RSS map, we also developed a robust location searching
algorithm by utilizing both undetected AP information and
clustering method. Our evaluation results in both 802.11 and
Bluetooth networks show that the probabilistic approach and
our location searching technique improve the localization
accuracy, the system achieves very low localization error even
with a small size of only 5 training locations over an area
of 3750m2. These results clearly demonstrate that REAL is
practical for deployment in a large indoor environment.
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