
PocketParker: Pocketsourcing Parking Lot Availability

Anandatirtha Nandugudi, Taeyeon Ki, Carl Nuessle, and Geoffrey Challen
University at Buffalo

{ans25,tki,carlnues,challen}@buffalo.edu

ABSTRACT
Searching for parking spots generates frustration and
pollution. To address these parking problems, we present
PocketParker, a crowdsourcing system using smart-
phones to predict parking lot availability. PocketParker
is an example of a subset of crowdsourcing we call pocket-
sourcing. Pocketsourcing applications require no ex-
plicit user input or additional infrastructure, running
effectively without the phone leaving the user’s pocket.
PocketParker detects arrivals and departures by lever-
aging existing activity recognition algorithms. Detected
events are used to maintain per-lot availability mod-
els and respond to queries. By estimating the number
of drivers not using PocketParker, a small fraction of
drivers can generate accurate predictions. Our evalua-
tion shows that PocketParker quickly and correctly de-
tects parking events and is robust to the presence of hid-
den drivers. Camera monitoring of several parking lots
as 105 PocketParker users generated 10,827 events over
45 days shows that PocketParker was able to correctly
predict lot availability 94% of the time.

Author Keywords
Smartphone sensing; Crowdsourcing; Parking

ACM Classification Keywords
C.2.4 Computer-Communication Networks: Distributed
Systems

INTRODUCTION
Parking lots present a difficult search problem. Lacking
enough visibility to determine where spots are available,
drivers may search fruitlessly through lot after lot, wast-
ing time and energy while generating harmful vehicle
emissions. And while some high-demand lots in urban
areas and at airports have been instrumented to moni-
tor availability, the high cost of the equipment required
has prevented this approach from being widely-deployed
at many lots where drivers find themselves searching for
spots, including at university campuses and suburban
shopping malls. Our own campus featuring 40 lots with
over 80 entrances would cost at least $28,000 to monitor

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
UbiComp’14, September 13–17, 2014, Seattle, WA, USA
ACM 978-1-4503-2968-2/14/09. . .$15.00.
http://dx.doi.org/10.1145/2632048.2632098

even with the least expensive research prototype [14] and
an order-of-magnitude more with available commercial
solutions [1]. Instead of relying on additional infrastruc-
ture, we believe a free solution is already in our pockets.

PocketParker is a system that predicts parking lot avail-
ability using smartphones. Unlike previous approaches,
our approach requires no additional infrastructure, no
vehicle modifications, and no user interaction, only the
installation of a smartphone app. PocketParker runs
unattended in the background and uses activity tran-
sitions to detect parking lot arrivals and departures.
These are forwarded to a central server that incorpo-
rates them into per-lot availability models. This allows
PocketParker to order lots accurately by the probability
that they contain an available spot. We consider Pocket-
Parker an example of a subset of crowdsourcing that does
not require any user input which we call pocketsourcing.

Predicting parking availability requires accurately de-
tecting parking events as well as determining the effect of
hidden drivers—drivers not using PocketParker—on lot
availability. We address the first challenge with a simple,
effective, and energy-efficient event detector which uses
accelerometer data to detect vehicle arrivals and depar-
tures. The second goal we achieve with an availability
estimator that maintains a probability model for each
lot by incorporating events generated by PocketParker
clients. Parking events are used both to model arrival
and departure rates and to estimate the number of hid-
den drivers. One key insight is that even without moni-
toring all drivers there are moments when PocketParker
is certain that a parking spot is available in a particular
lot and can use this information to assist users.

Our paper makes the following contributions. After mo-
tivating our approach through an examination of related
work, we present the design of PocketParker in detail,
describing in separate sections how PocketParker detects
parking events and maintains per-lot availability models.
We then perform a thorough evaluation of each compo-
nent of PocketParker and the performance of the system
as a whole. We test our parking event detector in a con-
trolled environment with eight volunteers participating
in ten parking scenarios. We test our parking availabil-
ity estimator with a simulator providing the ability to
experiment with a variety of parking lot configurations
and arrival and departure rates.

Finally, we test the end-to-end effectiveness of Pocket-
Parker through a field trial involving 105 smartphones
users that generated 10,827 parking events over 45 days.

http://blue.cse.buffalo.edu
mailto:permissions@acm.org
http://ubicomp.org/ubicomp2014/
http://dx.doi.org/10.1145/2632048.2632098

To obtain ground truth, we deployed four cameras to
monitor two parking lots over two weeks and hand-coded
four days’ worth of images to measure their true avail-
ability. Our results demonstrate that PocketParker can
accurately and efficiently detect parking events and use
them to make accurate availability predictions. During
the field trial it was able to correctly predict lot avail-
ability 94% of the time.

MOTIVATION AND RELATED WORK
While infrastructure solutions for monitoring lot avail-
ability exist, they are extremely expensive. The SF-
Park system spent $18 million to instrument 7000 street
spots, or roughly $2500 per spot [3]. Surface lots are
cheaper to monitor since equipment can be deployed
only at ingress-egress points, but the technology required
to do so remains expensive. The vehicle detector and
transponder required at each entrance costs $9700 [1]
and programmable sign to communicate lot availability
to drivers running $49,000 [7], not including the continu-
ing cost of telemetry. Our campus with 40 lots and over
80 lot entrances would cost $776,000 for entrance mon-
itors alone, and over $2 million dollars with lot avail-
ability signs. Even using a $350-per-entrance research
prototype based on wireless sensor network nodes would
cost $28,000, again not including the cost of communi-
cation. The prohibitive cost of these solutions has pre-
vented their widespread deployment, with the result that
many parking lots are still not monitored.

As smartphones have become ubiquitous, multiple apps
and research projects have attempted to harness their
capabilities to aid the parking process. But while app
marketplaces such as the Google Play Store teem with
parking-related apps, these apps either do not pro-
vide real-time parking lot availability or simply display
publicly-available information. Several research projects
have attempted to address these limitations but suffer
from limitations that prevent them from scaling, re-
quiring additional infrastructure [10], on-vehicle equip-
ment [11] vehicle-to-vehicle networking [8, 11], or oner-
ous manual user input [5]. To the best of our knowledge,
PocketParker is the first app that can monitor parking
lot availability without interacting with users.

Most close to our work is Parksense [13], a system that
leverages the ubiquity of Wifi beacons to monitor on-
street parking availability. Our study, borne out of sub-
urban campus locale, must cope with alternative sensing
mechanisms in the wake of no proximate Wifi signals.
We have also tuned our tracking and reporting method-
ology to address the different challenges produced by lot,
rather than street, parking. ParkNet [11] is another sys-
tem that estimates street parking availability by using
vehicles equipped an ultrasonic range finder to detect
empty street parking spots. Unlike ParkNet, Pocket-
Parker does not require new vehicle capabilities.

PocketParker’s parking detector builds on existing ap-
proaches to accurate and energy-efficient activity recog-
nition [6, 9, 15, 17, 16]. While our current detector is

Figure 1: Detection algorithm. The graph shows the
accelerometer data collected during our controlled ex-
periment and shows a period of walking, followed by
driving, followed by a return to walking. Transitions
between these states in areas known to be parking lots
suggest vehicle arrivals and departures.

both simple and parking-focused, continued progress in
reducing the energy overhead and increasing the accu-
racy of smartphone activity recognition algorithms will
improve PocketParker’s performance.

EVENT DETECTOR
The inputs to PocketParker’s availability estimation al-
gorithm are arrival and departure events generated by an
activity detector running unattended on users’ smart-
phones. While considerable previous research has ex-
plored activity detection using mobile sensing [6, 9, 15,
17, 16], we designed a custom parking event detector
tailored to the goals of PocketParker.

PocketParker assumes that transitions between walking
and driving that occur inside known parking lots con-
stitute either arrival (driving to walking) or departure
(walking to driving) events. We thus must be able to dis-
cern between walking and driving states of the user, and
to do so fast enough to fix the the location of the parking
lot in which the event took place. Detecting these states
could be achieved using continuously-sampled GPS data
would consume too much energy for an effective pocket-
sourcing solution. Rather, we rely on duty-cycled ac-
celerometer data to classify the user behavior into one
of three states: walking, driving, or idle.

Figure 1 depicts two changes in user state, from walking
to driving and back again. The initial inference yielded
by the accelerometer is subsequently refined with GPS
and Wifi sense data to yield the desired goal: detec-
tion of arrival and departure events. The smartphone
reports these events and their locations to the Pocket-
Parker server. Before recording the event, the server
verifies its location against a list of known parking lot
locations to eliminate events that are either obviously
incorrect (a user parking in a field) or unwanted (a user
parking but in a loading area rather than in a lot).

A	

C	

Lot	
 1	
 Lot	
 2	
 B	

Figure 2: Example parking lot setup. Two lots and
three destinations are shown.

After we deployed our PocketParker prototype, Google
incorporated activity recognition algorithms into its
Google Play Services library. We have incorporated
them into PocketParker and, while we have not per-
formed a detailed evaluation, we have not found the
change to affect PocketParker’s event detection accuracy.

AVAILABILITY ESTIMATION
In order for parking events to be useful, they must be in-
corporated into a model that allows us to predict where
parking is available. Because PocketParker focuses on
monitoring surface lots, not on-street parking, we struc-
ture our prediction engine to return the probability that
a given parking lot has space available. This information
is used by drivers to determine what lots to search and
in what order. PocketParker’s estimator uses the events
produced by our parking event detector both to estimate
the rates at which drivers are searching and departing
from the lot and to adjust the availability probability
directly. In this section, we present both the design of
the PocketParker client parking lot availability estimator
and portions of the backend server for our system.

Overview
Figure 2 shows an example setup with two parking lots
and two destinations that are used throughout this sec-
tion. For each lot PocketParker maintains a time-varying
probability that the lot has n free spots P (t, n). While
we are mainly interested in the probability that the lot
has a space available Pfree =

∑
n>0 P (t, n), we main-

tain separate probabilities for each number of free spots
so that we can manipulate individual probabilities in re-
sponse to events and queries as described below. We
bound the count probability distribution to lie between
0 and the capacity of the parking lot.

PocketParker’s estimator receives two types of events:
arrivals and departures. However, for each arrival in a
given lot, a number of additional lots may have been
searched unsuccessfully, information critical to the ac-
curacy of our availability model. In the next two sec-
tions we describe how PocketParker determines relation-
ships between parking lots and combines that informa-
tion with arrivals to estimate implicit search behavior.

Between events we want to maintain our availability
model by estimating the rate at which departures and
searches are taking place. PocketParker must use the

events it can detect to estimate the rate at which events
are taking place in the lot, which includes the effect of
drivers not using PocketParker, which we call hidden
drivers. Accomplishing this requires that we estimate
the ratio between monitored and hidden drivers. With
an estimate of the hidden driver ratio, we can scale the
search and departure rates accordingly. Finally, we in-
tegrate all of this information to update our availability
estimate as arrival and departure events are received.

Estimating Lot Capacity
PocketParker requires an estimate of lot capacity C in
several places. First, we use this estimate to bound P (t)
such that P (t, n > C) = 0 ∀ t. Second, we use the ca-
pacity to determine the number of hidden drivers. To
calculate a lot capacity, we use the location of the park-
ing lot obtained from the OpenStreetMap database [4].
We derive the lot size from its location and then di-
vide the total size by that of a typical standard parking
spot lot design [2]. For the three lots monitored by our
deployment, capacity estimates were all within 6% of
manually-counted ground truth. Errors in the capacity
can result if the size of parking spots in the lot differ
from our estimate, or if the parking lot is not efficiently
packed with spots. Given the incentive of lot designers to
maximize capacity, we consider the second case unlikely.

Lot Relationships
While PocketParker’s parking event detector identifies
only arrivals and departures, identifying unsuccessful
searches is crucial in order to determine the reason for
a drop in arrival rates. If we observe the arrival rate
fall at a given lot, it may be because the lot is full, or
it may be simply because fewer drivers are arriving and
the lot still has many spaces available. Observing un-
successful searches in the first case allows PocketParker
to infer that the lot is full and suggest drivers park else-
where. In order to estimate search behavior, we need to
understand the relationships between parking lots. This
requires two additional pieces of data about each lot:
what destinations it serves and how desirable it is.

Lot destinations
The lot destination represents the place or places where
the user is ultimately going after parking. In Figure 2,
lot 1 may be associated with destinations A, B and C;
while lot 2 is only linked to B. While mapping software
can be used to assign lots to the nearest labeled build-
ing, this approach fails when lots serve multiple destina-
tions. To handle this case, PocketParker uses Wifi local-
ization of the first access point seen by the smartphone
after the user parks to determine what indoor location
the user entered after parking. The probability distri-
bution that emerges from a history of these events can
be used to predict where a user is going at the moment
that a parking event is detected. In the future, data
from navigation tools may be able to link destinations
automatically with lots by noting where users park after
requesting directions to a particular location.

Desirability index
The desirability index reflects a lot’s relative preference
to drivers. We infer a lot’s desirability from the destina-
tions associated with each lot and the lot’s distance to
each, assuming that PocketParker users prefer the clos-
est available lot to their final destination. In Figure 2, if
lot 2 is associated with destination A it will be ranked
less desirable than lot 1 because it is further from the des-
tination. Integration with navigation tools can also help
refine the desirability index by observing what lots are
searched by users on their way to a particular destina-
tion. Currently PocketParker saves energy by enabling
GPS only after detecting parking events and so does not
have a trace of the users locations before parking that
could be used to identify more desirable lots.

Implicit Searches
With an understanding of lot relationships we can use
observed arrivals to model implicit—or unobserved—
searches. When a user parks in a given lot, we use the
desirability index of the lot to add unsuccessful searches
in more desirable lots associated with the same destina-
tion. There are two challenges to this approach. First,
as described above, lots may be associated with multi-
ple destinations. Second, the user may not have actually
performed the search. After discussing both of these is-
sues below, we continue by describing how PocketParker
incorporates the information from implicit searches in a
way sensitive to these uncertainties.

Determining the destination
If a lot is associated with multiple destinations, we can-
not immediately determine the user’s destination. This
is not a problem as long as all potential destinations
are on the same side of the lots. For example, in Fig-
ure 2, if lots 1 and 2 are both associated with destina-
tions A and C, but not with B, then an arrival with an
unknown destination into lot 2 can always be used to
generate an implicit search in lot 1, since the destination
does not alter the desirability ranking for the two lots.

However, having two or more destinations that are lo-
cated on different sides of lots produces an ambiguity.
If both lots 1 and 2 are associated with all destinations,
then an arrival in lot 2 cannot be resolved directly. If
the user’s destination was A, it may mean that lot 1 was
searched and is full. If the destination was B, the parking
event may not indicate anything about lot 1. To resolve
this ambiguity, PocketParker uses information about the
users final destination gathered as described above.

Speculative searches
If we do not directly observe a user searching a lot be-
fore we detect an arrival, we cannot be certain that they
performed the search. If the unsearched but preferable
lot was available, they may not have searched it because
they preferred to choose the first available spot, enjoyed
the exercise of walking farther to their destination. How-
ever, these are not the type of users we believe would
benefit from or use PocketParker, since finding a non-
optimal parking spot is fairly simple in most cases.

0 2 4 6 8 10 12 14
Day

−40

−30

−20

−10

0

10

20

30

40

R
un

ni
ng

C
ou

nt
a l

Monitored Capacity Estimation
Lot 1
Lot 2

Figure 3: Example of capacity estimation. Running
counts for two lots are shown.

A more interesting case is where a user has not per-
formed a search in a desirable lot because it looks full.
Users that park regularly at the same destination may
maintain temporal models for the availability of spots in
certain lots (“I can never park there after 9AM”) caus-
ing them to discard those lots without searching them if
they believe the probability of finding a spot in the de-
sirable lot is low. While this behavior can cause users to
miss available spots, these speculative searches are useful
inputs since they reflect lots users think are full.

A final corner case that PocketParker does not handle is
if all lots for a destination are full and many undetected
unsuccessful searches are taking place. On one hand, if
all lots are full then spot availability is entirely deter-
mined by departures and so search data is useless. On
the other hand, we would like to identify this situation
for users that would prefer to avoid destinations where it
is impossible to park. Later we point out how integrating
PocketParker into existing navigation applications could
address this problem by making searches explicit.

Hidden Driver Estimation
Monitored PocketParker users compete for parking
spaces with unmonitored users, which we call hidden
drivers. While we assume that PocketParker users are
generally representative of the entire driving population,
we do not assume that all or even a large fraction of
drivers will download and install PocketParker. We want
our system still to provide accurate predictions with the
limited information caused by hidden drivers. To accom-
plish this, PocketParker needs to estimate the percentage
of drivers that are monitored, which we call the moni-
tored fraction fm. A low monitored fraction indicates
that few users are using PocketParker, and vice versa.
Put another way, the amount of uncertainty Pocket-
Parker faces when predicting availability is inversely-
proportional to the monitored fraction.

Importance of monitored fraction estimation
Two examples will illustrate why we need this informa-
tion and how it is used. First, when a monitored driver
leaves a parking lot, the monitored fraction determines
how long PocketParker will predict that a spot in that
lot is available. As the monitored fraction increases, the
probability of PocketParker seeing the arrival into the lot
that occupies that spot increases, and we can increase
the amount of time that we estimate a spot is available.
On the other hand, as the monitored fraction decreases
we see fewer arrivals and are faced with more uncer-
tainty. Hence, PocketParker reduces the amount of time
it predicts the spot is available. Second, PocketParker
uses the arrival and departure rates of monitored drivers
to estimate changes to parking lot availability over time.
Here we must scale the observed number of events to the
actual number of events, which requires an estimate of
the monitored fraction.

PocketParker estimates the monitored fraction by first
determining the monitored capacity—the capacity of the
lot measured by monitored drivers—and then using our
estimate of the lot capacity. Specifically, given a lot with
capacity C, the monitored fraction can be estimated as
fm = Cm

C . Our task then becomes estimating the moni-
tored capacity Cm. To estimate the monitored capacity
we maintain a running count a for each lot, decremented
when drivers arrive and incremented when they leave.
We can consider a as a estimate of the number of spots
available in the lot scaled by fm, although we do not
bound a as 0 ≤ a ≤ C.

Figure 3 shows an example of the running count for two
related lots over seven days using data generated by our
lot simulator described in more detail in the evaluation.
Both lots have capacity 200 and the actual monitored
fraction is 0.1. As the data shows, the running count
experiences long-period (greater than one day) fluctu-
ations due to events missed by our event detector and
the randomness associated with the small percentage of
drivers being monitored. However, the data also contains
short-period (less than one day) fluctuations caused by
the dynamics of the lot being monitored, and these fluc-
tuations are roughly the size of the monitored capacity
Cm, which in this case is 20 spots.

This observation motivates the design of our monitored
capacity estimator. First, we bin the data into 24 hour
intervals. Next, we identify the largest availability swing
over each window. Finally, we average multiple swings
together for a period of days to determine the final esti-
mate. This simple approach works well on lots that fill
on a regular basis. For the example in Figure 3, our es-
timator estimates the monitored capacity of lots 1 and 2
as 21.01 and 21.08, respectively, within 10% of the true
value in both cases. We perform a further analysis of
our capacity estimator using multiple lot simulations in
the evaluation.

For lots that do not fill regularly, we may need to pro-
duce a weighted sum where larger swings are weighted

more heavily given our assumption that they more ac-
curately measure the true monitored lot capacity. An-
other approach is to use the fm estimated at desirable
lots for a given destination, which are more likely to fill
completely and often, to estimate the fm for lesser de-
sirable lots. Here we are making the reasonable assump-
tion that lots connected to the same destination share
similar fractions of PocketParker users. Finally, Pocket-
Parker’s monitored fraction estimator runs periodically
to incorporate changes in the monitored fraction caused
by increasing use of PocketParker.

Rate Estimation
When PocketParker receives arrival and departure event
information, it knows something concrete about the state
of the lot. However, to predict availability at other times
we need to adjust our estimation based on recently-
observed events, which we call rate estimation. To esti-
mate the rate of events in the entire population including
hidden drivers, PocketParker must scale its rate of park-
ing events by monitored drivers appropriately. Next, we
use these scaled estimates to adjust the probability that
a lot has a certain number of spots and spots available.

During a time interval t0 to t1, PocketParker will ob-
serve some number of searches sobs(t0, t1) or departures
dobs(t0, t1) in any given lot1. Note that the search count
includes both arrivals—successful searches—and implicit
unsuccessful searches derived from arrivals at related lots
as explained above. However, depending on the moni-
tored fraction fm the true count strue(t0, t1) is likely to
be much larger. Rather than simply scaling the count by
1
fm

, we want to determine the probability distribution

over all possible true counts given the rate we observed
and the estimated monitored fraction. One reason we do
not simply scale by 1

fm
is that our uncertainty about the

true count should be affected by fm. If all drivers use
PocketParker, we know the true count exactly; if few do,
we should be uncertain.

To compute the probability distribution we treat sobs as
the output of a binomial distribution with probability
fm and vary the number of trials. The binomial distri-
bution reflects the fact that drivers are either monitored
by PocketParker or not with estimated probability fm.
Specifically:

P (strue|sobs) = C ·
(
sobs
strue

)
f (sobs)
m · (1− fm)(strue−sobs)

where C is a renormalization constant equal to
∑

strue
P .

Updating the count probabilities
Given the probability that a lot has n free spots at
time t0, P (t0, n), we want to estimate the probabilities
P (t1, n) at a later time t1. PocketParker uses recently-
observed arrivals, implicit searches and departures to es-
timate the search sest and departure dest rates the lot

1Without loss of generality our examples of scaling and esti-
mating rates use notation for the search rate.

experienced between t0 and t1. Currently, we use ar-
rival and departures over a fixed-size window I before
t0, sobs(t0 − I, t0) scaled to the length of t0 to t1:

sest(t0, t1) = sobs(t0 − I, t0) · (t1 − t0)

I

The value of sest(t0, t1) is then scaled as described above
to determine the distribution of strue. Given the pre-
dictable traffic flows of our campus environment over the
course of a term, PocketParker assumes the rates experi-
enced over the last I time interval will continue. It may
be possible to perform better rate estimation by using
historical information, but this is left as future work.

The distribution of search rates strue(t0, t1) represents
the probabilities that the number of available spots in the
lot will decline, whereas the departure rate dtrue(t0, t1)
represents the probability the number of spots will in-
crease due to departures. The convolution of −1 · strue
and dtrue, ∆(t0, t1), represents the change in the number
of spots produced by the specific combination of arrival
and departure rates. A further convolution of ∆(t0, t1)
with P (t0, n) produces P (t1, n), the probability at t1:

P (t1, n) = P (t0, n) ∗ (−1 · strue(t0, t1) ∗ dtrue(t0, t1))

where ∗ represents the discrete convolution.

Note that the convolution of P with ∆ can cause non-
zero probabilities in P that violate our boundary con-
ditions, namely that P (n < 0) = 0 and P (n > C) = 0
where C is the estimated capacity of the lot. To cor-
rect this, we simply set P (n = 0) =

∑
n<0 P (n) and

P (n = C) =
∑

n>C P (n), assigning all the probability
that the lot has less that zero free spots to the zero state
and all probability that it has more than the capacity of
the lot of free spots to the empty state.

Rateless spreading
If the departure rate exceeds the arrival rate, the proba-
bility mass of ∆ will lie primarily to the positive side and
it will shift P in the positive direction, producing higher
probabilities that spots are available in the lot and low-
ering the probability that the lot is full. The opposite is
true when the search rate exceeds the arrival rate.

An important case is intervals during which Pocket-
Parker has observed neither arrivals nor departures in
a given lot. In this case, ∆ will be centered around 0
but have a spread determined by the monitored frac-
tion. Its effect on P will be to redistribute the proba-
bility mass more evenly across the entire interval from
0 to C. Taken over many intervals, the probability of
the lot having any number of spots available will equal-
ize, which is what we would expect: after a long period
without any information, all states become equally likely
and we cannot make an accurate prediction of the state
of the lot. Note also that the speed at which the prob-
abilities are redistributed through rateless spreading is
determined again by the monitored fraction. The fewer
drivers we monitor, the more quickly we lose all memory
of the state of the lot.

Online Updates
Finally, we conclude by describing how PocketParker
uses arrival to adjust its availability model instanta-
neously at runtime. Each arrival and departure re-
ceived at time t represent strong positive information—
moments when PocketParker knows either that a spot
just existed (arrival) or now exists (departure). Pocket-
Parker uses these events to adjust the probability distri-
bution and incorporate this new information.

Arrivals provide two somewhat conflicting pieces of in-
formation. First, PocketParker knows that at the time
of the arrival there was a spot free, so in this way ar-
rivals indicate that the lot is not full. However, Pocket-
Parker also knows that immediately after an arrival the
lot has one fewer available spots. So we incorporate ar-
rivals in two steps. First, we set P (t, 0) = 0 indicating
the availability of a spot and renormalize the distribu-
tion. Second, we shift the entire distribution downward
by one spot, P (t, n) = P (t, n − 1), reflecting the loss of
a parking space due to the arrival.

Departures produce a straightforward change to the
probability distribution. When a user departs, we know
at that moment that there is a free spot in the lot, so
we can set P (t, 0) = 0 and renormalize the distribution.
Note that, since the probability that the lot is free is
Pfree =

∑
n>0 P (t, n), at the exact time of each depar-

ture the probability that a spot is free is equal to 1.

Unsuccessful implicit searches, in contrast, represent
weaker negative information, both because they were not
observed by PocketParker and so may not have actually
taken place, or because they may not have been thor-
ough. What we want is to increase the probability that
the lot is full while reflecting our current estimate of
the lot. We do this by shifting the availability distri-
bution towards full by some amount s, which we refer
to as the search shift parameter. So, after an implicit
unsuccessful search, we set P (t, n) = P (t, n − s), with
P (t, 0) =

∑s
0 P (t, n). The search shift parameter deter-

mines how aggressively PocketParker will use informa-
tion provided by implicit searches.

Weighted arrivals and departures
Shifting the distribution one space on arrivals and de-
partures is the most conservative approach represent-
ing what we definitely know: that one spot is available.
However, if we assume that our monitored drivers are
representative of some larger number of hidden drivers,
we may set Pl(t, n < X) = 0 for some X larger than 1
and scaling with 1

fm
. For our experiments we choose the

conservative approach and set X = 1. As future work
we consider how users may customize the behavior of
PocketParker to be more or less aggressive in locating
parking spots, trading off time for a better spot.

0 5 10 15 20
0

50

100

150

200
C

ap
ac

ity
Fast Fill

Lot 1
Lot 2

0 5 10 15 20
Hour

−300
−200
−100

0
100
200
300

R
at

e

Arrival
Departure

0 5 10 15 20
0

50

100

150

200
Slow Fill

0 5 10 15 20
Hour

−60
−40
−20

0
20
40
60

0 5 10 15 20
0

50

100

150

200
Multiple Fill

0 5 10 15 20
Hour

−300
−200
−100

0
100
200
300

0 5 10 15 20
0

50

100

150

200
High Churn

0 5 10 15 20
Hour

−200
−150
−100
−50

0
50

100
150
200

0 5 10 15 20
0

50

100

150

200
Low Churn

0 5 10 15 20
Hour

−40
−20

0
20
40

Figure 4: Description of each type of lot simulated. Five different lots with different behaviors were used.

Carry Location Count Car Location Count
In hand 18 Cup holder 16
Side bag 10 Car seat 9
Back pack 10 Side bag 10
In hand talking 7 Back pack 9
Front pocket 14 Front pocket 14
Jacket pocket 14 Jacket pocket 14
Back pocket 7 Back pocket 14

Table 1: Carry and car location for detector exper-
iment. Eight participants generated 80 runs, carrying
and placing the phone in their car in many ways.

EVALUATION
We evaluated PocketParker in three ways. First, we con-
ducted a controlled experiment to determine the best
parameter settings for our event detector. Second, we
implemented a parking lot simulator to experiment with
various kinds of lots under differing monitored fractions.
Finally, we deployed PocketParker on our campus. We
monitored two lots with camera monitoring to ground
truth our predictions. Our evaluations confirm that
PocketParker is efficient and accurate.

Detector Experiment
To determine the right parameter settings for our tran-
sition detector, we conducted a controlled experiment.
During this experiment, accelerometer and GPS data
was collected and stored continuously on each device,
and participants were asked to manually label each tran-
sition into and out of the car. Afterwards, data was pro-
cessed by a Python simulator implementing the identical
algorithm used by the PocketParker, allowing us mea-
sure accuracy and energy consumption as a function of
the detector duty cycle.

Eight volunteers participated, including seven men and
one woman. Seven were right-handed and one was left-
handed. Each was asked to conduct the same experi-
ment ten times: (1) carrying the instrumented phone,
walk to their car; (2) label departure; (3) drive around
campus briefly; (4) park and label arrival; (5) return in-
side. Since the way the phone is carried while walking

and placed in the car while driving affects the accelerom-
eter readings, care was taken to generate a good mix of
carry and car location styles. Table 1 shows the break-
down. The experiment permitted us to obtain sensing
data from a cross section of individuals possessing differ-
ent body morphologies, habits of driving cars, and ways
of handling mobile devices.

Figure 5 displays the tradeoff between energy usage and
detection accuracy as a function of the PocketParker
duty cycle. Here we combine an active period of 5s with
a inactive period of variable length, between 5 and 55s,
for an overall duty cycle between 0.5 and 0.06. Our
simulator uses energy numbers from the Android Fuel
Gauge application to estimate average power consump-
tion. This graph measures the accuracy of detected
events in terms of distance from the actual location of
the event labeled by the participant.

As expected, longer duty cycles consume less energy but
produce longer detection latencies which translate into
higher distances from the event location. Note also that
departures have higher location error than arrivals be-
cause departing users are driving and therefore traveling
more rapidly. Overall power usage by PocketParker is
low, under 10 mW at all duty cycles. Because Pocket-
Parker’s ability to map parking events into lots is af-
fected by the detection distance accuracy, we chose a
low total period of 15 s for a 0.25 duty cycle. This al-
lows PocketParker to determine location to within 25 m
for arrivals and 80 m for departures. Power consump-
tion at this duty cycle is 8 mW, representing 4.2% of the
capacity of a 1500 mAh battery over 24 hours.

Using the same data we also examine the false positive
and negative rates for arrivals and departures. This is
important since, without explicit user input, it would be
impossible to determine this information while Pocket-
Parker is in use. Figure 6 shows PocketParker can detect
80% of arrival and departure events correctly at the 0.25
duty cycle we use. False positive rates are already quite
low, and this is before we apply our GPS availability

10 20 30 40 50 60
Total period (s)

0

2

4

6

8

10

T
o
ta

l
P
o
w

e
r

(m
W

)

Energy
Arrival Event
Departure Event

0

50

100

150

200

250

A
cc

u
ra

cy
 (

M
e
te

r)

Figure 5: Power usage vs. detector accuracy. En-
ergy usage by PocketParker is low at all duty cycles, so
we chose a high duty cycle to improve accuracy.

filter and lot location filters. False positives decline as
the duty cycle decreases because PocketParker has fewer
opportunities to detect user activity.

Simulation Results
To experiment with PocketParker in a more controlled
setting, we implemented a parking lot simulator in
Python. Our simulator allows us to simulate any num-
ber of parking lots associated with any number of points
of interest with varying desirability levels. For simplicity
during our evaluation, we simulate two lots 1 and 2 with
lot 1 filling before lot 2, although lot choice by simulated
drivers is randomly weighted. Particularly for evaluat-
ing our monitored fraction estimation, we use five types
of lots that fill and empty differently:

• Fast Fill and Slow Fill fill once per day quickly or
slowly, like a lot associated with a place of work.

• Multiple Fill represents a lot that rapidly fills and
empties repeatedly during each day, like a campus lot
or movie theater.

• High Churn starts with lot 1 full and experiences
continuously high arrival and departures rates, like an
airport parking lot.

• Low Churn represents underutilized lots that never
completely fill, with lot 2 almost completely unused.

Figure 4 shows the arrival and departure rates for each of
the types of lot as well as the resulting per-lot capacity.

Monitored fraction estimation
Earlier we described our approach to estimated the mon-
itored fraction, a parameter important to the opera-
tion of the PocketParker availability estimator. Figure 7
shows the results of 10 random simulations for each lot
type. In each case, the monitored fraction estimator uses

10 20 30 40 50 60
Total period (s)

0

20

40

60

80

100

R
a
te

Negative Detection (Arrival)
Negative Detection (Departure)
False Positive (Arrival)
False Positive (Departure)

Figure 6: False positive and negative rates as a
function of detector duty cycle.

a weeks worth of data and proceeds as described previ-
ously. The error in the monitored fraction estimate is
shown as a function of the actual monitored fraction for
the simulation used.

For the five types of lots, we would expect PocketParker
to do better monitored fraction estimation when lots fill
regularly—Fast Fill, Slow Fill, and Multiple Fill—and
poorly when they do fill erratically or not at all—High
and Low Churn. The results in Figure 7 generally fol-
low this pattern. Errors for High Churn are quite high,
and Low Churn errors persist even at high monitored
driver fractions. This is natural, as the Low Churn lot
never fills. By contrast, the accuracy rate for the Fast,
Slow and Multiple Fill models improve with an increas-
ing fraction of monitored drivers.

Probability and availability
We now consider how PocketParker adjusts lot avail-
ability probabilities. It uses these probabilities to rank
available lots in response to queries. Figure 8 shows a
24 hour simulation of a Fast Fill parking lot with a mon-
itored fraction of 0.1 and a 10% error in the estimation
of the monitored fraction. The ground truth capacity of
the lot as simulated is plotted next to the PocketParker
probability that the lot has an available spot. At the be-
ginning, both lots are marked as free. After lot 1 fills and
lot 2 begins to fill, which generates implicit searches in
lot 1, the availability probability of lot 1 drops. It spikes
upward repeatedly due to departures from lot 1—which
reset the short-term probability of an available spot back
to 1—but does not equal the probability for lot 2 again
until the point when the departure rate for lot 1 climbs.

Prediction accuracy
PocketParker exists to help drivers park efficiently. To
examine its prediction accuracy, we have PocketParker
rank two model lots in order of preference at regu-
lar timesteps and then compare these results with the

0.0 0.1 0.2 0.3 0.4 0.5
Monitored Fraction

0

20

40

60

80

100

E
st

im
at

e
E

rr
or

Fast Fill
Lot 1
Lot 2

0.0 0.1 0.2 0.3 0.4 0.5
Monitored Fraction

0

10

20

30

40

50
Slow Fill

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Monitored Fraction

0
20
40
60
80

100
120
140
160
180

Multiple Fill

0.0 0.1 0.2 0.3 0.4 0.5
Monitored Fraction

0
50

100
150
200
250
300
350
400
450

High Churn

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Monitored Fraction

0

20

40

60

80

100

120

140
Low Churn

Figure 7: Errors in monitored fraction estimation. Currently PocketParker is better at estimating the monitored
fraction when lots fill and empty regularly.

0 5 10 15 20 25
Time

0

50

100

150

200

A
ct

ua
lC

ap
ac

ity

Lot Capacity

0.0

0.5

1.0

0 5 10 15 20 25
Time

0

50

100

150

200

0.0

0.5

1.0
Av

ai
la

bl
e

Pr
ob

ab
ili

ty

Available Probability

Figure 8: Availability probabilities tracking lot ca-
pacity. Dips in the availability probability correspond
to times when PocketParker believes the lot is full. Dis-
continuities are caused by departures, which set the in-
stantaneous probability that the lot is available to 1.0.

ground truth from a simulator. Finally, we categorize the
results as a correct prediction, a missed opportunity—
a case where a more desirable lot was available than
the one that PocketParker recommended—or a waste of
time—where PocketParker sent the user to a full lot.
Table 2 shows data results from simulations run using
varying monitored fractionsfm of drivers.

Also, Figure 9 shows that several trends can be observed
in the results. First, overall PocketParker does well on
most lot types. The High Churn lot presents the great-
est difficulty, which we would expect since its large num-
ber of incoming and outgoing drivers make prediction
difficult. We are also concerned that the High Churn
errors are largely waste of time errors, indicating that
PocketParker is frequently sending drivers to the wrong
lot. This is likely because it is predicting that spots are
available longer than they actually are. Clearly more
work is needed to determine the right approach for High
Churn lots, and this type of lot may be a better fit for
infrastructure-based solutions.

Excluding the High Churn lot, the lot with the lowest
correct percentage with a fm > 0.1 is 80% for the Slow
Fill lot. Accuracy above this fm is consistently good for

Type Day fm Correct Missed Waste

Campus 1 0.07 56.1 % 43.9 % 0.0 %
2 0.13 80.9 % 1.9 % 17.2 %
3 0.17 72.4 % 11.0 % 16.6 %
4 0.20 94.2 % 5.8 % 0.0 %

Table 2: Accuracy of PocketParker predictions for
various fraction of monitored drivers for 4 days.

0.0 0.1 0.2 0.3 0.4 0.5
Monitored Fraction (fm)

50

60

70

80

90

100

C
or

re
ct

Pr
ed

ic
tio

n
(%

)

High Churn
Low Churn
Multiple Fill
Slow Fill
Fast Fill

Figure 9: Accuracy predictions for various kind of
lots and parameters.

all lots save the High Churn model. The Low Churn
lot does have a small number of errors but this is be-
cause both lots are usually empty. An unavoidable lower
bound to accuracy is imposed by the frequency of park-
ing PocketParker has the most information about lot
availability during periods of parking events. Once such
information stops, prediction uncertainty grows. Thus,
to the degree that PocketParker queries follow a pattern
of arrivals and departures, it will do well.

Figure 10: Map showing 217 parking events de-
tected by PocketParker during our forty-five-day
deployment in three key lots. Lot A is considered
the most desirable, and Lots A and B were monitored
by cameras to establish ground truth.

Deployment
Finally, to establish the accuracy of PocketParker we de-
ployed our PocketParker application on PhoneLab [12]
after obtaining IRB approval. The only infrastructure
required was the PocketParker server for receiving events
and generating availability estimates. The userbase in-
volved 105 total participants from PhoneLab. Over 45
days of monitoring, the PocketParker app run by these
users generated 10,827 events—5916 arrivals and 4911
departures—for an average of 241 per day. Our main and
medical campuses produced 3645 and 846 total events re-
spectively, with non-campus locales contributing to the
remaining 6336 events.

Figure 10 shows all of the events that occurred in three
key lots that we monitored during our experiment. Our
computer science building is labeled as the point of in-
terest (POI). The three labeled lots were assigned our
building as a destination and desirability indices based
on their proximity. To determine ground truth avail-
ability, we positioned four cameras at locations within
the building to monitor lots A and B in Figure 10. De-
spite the fact that many parking events took place in
lot C, we were unable to locate a suitable vantage point
to gather camera data for that lot. Nexus S 4G smart-
phones equipped with fish-eye lenses took 34,138 time
lapse images each minute for four days.

Using these images, we produced lot capacity charts con-
taining the proportion of free spots in a given lot at a
given time. Specifically, we hand coded the images for
the two lots at ten minute intervals. We were particu-
larly interested in the transition between empty and full
states, so we were careful to ensure that a lot was never
marked full even if there was a single available spot.

We fed these capacity charts, along with parking events
in camera-monitored lots A and B, into the PocketParker
estimation engine to produce accuracy results for a four

day period. Table 2 shows results for our campus deploy-
ment. Overall the accuracy of PocketParker is excellent,
achieving 94.2% accuracy at a monitored driver fraction
of 0.2, which we believe is an accurate estimate of the
percentage of PocketParker users using these lots.

LIMITATIONS AND FUTURE WORK
The pocketsourcing approach taken by PocketParker
makes it easy to integrate into existing mapping ap-
plications, which would provide access to the estimated
half-billion smartphone users that have installed Google
Maps. The increase in the monitored fraction would sig-
nificantly improve PocketParker’s accuracy and usabil-
ity. This would enable PocketParker to display the loca-
tion of the events more precisely.

PocketParker presently bases its parking predictions on
a fifteen-minute limited rolling window of recent parking
events. We do not presently tap the benefit of daily and
weekly patterns that would otherwise enhance predictive
accuracy, but hope to do so in the future. Maintaining a
historical data collected from our own application would
increase the sample size and hence statistical accuracy
of our parking predictions. This is another area where
integration with a mapping application would help, pro-
viding PocketParker with access to much more data.

Presently, PocketParker is designed for a single user per
vehicle. Proximity detection of users would allow the
system to detect the case of multiple users in a vehicle
and thus to reduce spurious arrival and departure events.

Finally, we believe that once users begin interacting with
PocketParker we will see different parking preferences
emerge. Some user will want PocketParker to help them
aggressively hunt for spots, and be willing to wait for
drivers to leave. Others may be more interested in simply
finding a spot quickly even if it is farther away. Pocket-
Parker has several parameters that can control its pre-
dictions, and we will need to determine how to expose
these options to users.

CONCLUSION
We have presented PocketParker, a pocketsourcing solu-
tion for predicting parking lot availability. PocketParker
requires no explicit user input and can provide park-
ing lot predictions without being removed from a user’s
pocket. PocketParker’s accuracy derives from combining
a simple and energy-efficient parking event detector with
a sophisticated parking lot availability model that incor-
porates the effect of hidden drivers that compete with
PocketParker users for parking spots. Our evaluation
has demonstrated that PocketParker can provide accu-
rate predictions across a variety of parking lot types and
patterns, and that a fielded deployment of PocketParker
performed extremely well. We look forward to integrat-
ing PocketParker into existing mapping applications and
bringing it to pockets everywhere.

Acknowledgements
The authors would like to thank the anonymous Ubi-
Comp reviewers for their constructive feedback.

REFERENCES
1. Vehicle detection with wireless sensors, 2008.

2. Parking Lot Design Standards. http://goo.gl/v0F7u,
2012.

3. SFPark. http://goo.gl/ZlxQu, 2012.

4. OpenStreetMap. http://www.openstreetmap.org/, 2013.

5. Chen, X., Santos-Neto, E., and Ripeanu, M.
Crowdsourcing for on-street smart parking. In
Proceedings of the second ACM international
symposium on Design and analysis of intelligent
vehicular networks and applications, DIVANet ’12,
ACM (New York, NY, USA, 2012), 1–8.

6. Constandache, I., Bao, X., Azizyan, M., and
Choudhury, R. R. Did you see bob?: human localization
using mobile phones. In Proceedings of the sixteenth
annual international conference on Mobile computing
and networking, MobiCom ’10, ACM (New York, NY,
USA, 2010), 149–160.

7. Corporation, H. Advanced parking information system
evaluation report, 2001.

8. Delot, T., Cenerario, N., Ilarri, S., and Lecomte, S. A
cooperative reservation protocol for parking spaces in
vehicular ad hoc networks. In Proceedings of the 6th
International Conference on Mobile Technology,
Application and Systems, Mobility ’09, ACM (New
York, NY, USA, 2009), 30:1–30:8.

9. Keally, M., Zhou, G., Xing, G., Wu, J., and Pyles, A.
Pbn: towards practical activity recognition using
smartphone-based body sensor networks. In
Proceedings of the 9th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’11, ACM (New
York, NY, USA, 2011), 246–259.

10. Lu, R., Lin, X., Zhu, H., and Shen, X. Spark: A new
vanet-based smart parking scheme for large parking
lots. In INFOCOM 2009, IEEE (2009), 1413–1421.

11. Mathur, S., Jin, T., Kasturirangan, N., Chandrasekaran,
J., Xue, W., Gruteser, M., and Trappe, W. Parknet:
drive-by sensing of road-side parking statistics. In

Proceedings of the 8th international conference on
Mobile systems, applications, and services, MobiSys ’10,
ACM (New York, NY, USA, 2010), 123–136.

12. Nandugudi, A., Maiti, A., Ki, T., Bulut, F., Demirbas,
M., Kosar, T., Qiao, C., Ko, S. Y., and Challen, G.
Phonelab: A large programmable smartphone testbed.
In Proceedings of First International Workshop on
Sensing and Big Data Mining, SENSEMINE’13, ACM
(New York, NY, USA, 2013), 4:1–4:6.

13. Nawaz, S., Efstratiou, C., and Mascolo, C. Parksense: A
smartphone based sensing system for on-street parking.
In Proceedings of the 19th Annual International
Conference on Mobile Computing & Networking,
MobiCom ’13, ACM (New York, NY, USA, 2013),
75–86.

14. Propst, J., Poole, K., and Hallstrom, J. An embedded
sensing approach to monitoring parking lot occupancy.
In Proceedings of the 50th Annual Southeast Regional
Conference, ACMSE’12, ACM (New York, NY, USA,
2012), 309–314.

15. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M.,
and Srivastava, M. Using mobile phones to determine
transportation modes. ACM Trans. Sen. Netw. 6, 2
(Mar. 2010), 13:1–13:27.

16. Wang, Y., Lin, J., Annavaram, M., Jacobson, Q. A.,
Hong, J., Krishnamachari, B., and Sadeh, N. A
framework of energy efficient mobile sensing for
automatic user state recognition. In Proceedings of the
7th international conference on Mobile systems,
applications, and services, MobiSys ’09, ACM (New
York, NY, USA, 2009), 179–192.

17. Yang, J., Sidhom, S., Chandrasekaran, G., Vu, T., Liu,
H., Cecan, N., Chen, Y., Gruteser, M., and Martin,
R. P. Detecting driver phone use leveraging car
speakers. In Proceedings of the 17th annual
international conference on Mobile computing and
networking, MobiCom ’11, ACM (New York, NY, USA,
2011), 97–108.

http://goo.gl/v0F7u
http://goo.gl/ZlxQu
http://www.openstreetmap.org/

	Introduction
	Motivation and Related Work
	Event Detector
	Availability Estimation
	Overview
	Estimating Lot Capacity
	Lot Relationships
	Lot destinations
	Desirability index

	Implicit Searches
	Determining the destination
	Speculative searches

	Hidden Driver Estimation
	Importance of monitored fraction estimation

	Rate Estimation
	Updating the count probabilities
	Rateless spreading

	Online Updates
	Weighted arrivals and departures

	Evaluation
	Detector Experiment
	Simulation Results
	Monitored fraction estimation
	Probability and availability
	Prediction accuracy

	Deployment

	Limitations and Future Work
	Conclusion
	REFERENCES

