
Controlling Smartphone User Privacy via
Objective-driven Context Mocking

Nick DiRienzo and Geoffrey Challen
Department of Computer Science and Engineering, University at Buffalo

{nvdirien,challen}@buffalo.edu

Abstract—Smartphones represent the most serious threat
to user privacy of any widely-deployed computing technology
because these devices are always on and always connected,
making them the perfect candidate to know most about the owner.
Unfortunately, existing permission models provide smartphone
users with limited protection, in part due to the difficulty to
users in distinguishing between legitimate and illegitimate use of
their data; for example, a mapping app may upload the same
location information it uses to download maps (legitimate) to
a marketing agency interested in delivering location-based ads
(illegitimate). As a result, smartphone users find themselves forced
to make burdensome and error-prone tradeoffs between app
functionality and privacy. To combat this, we propose a new
approach called PocketMocker. By allowing substitution of real
data streams with artificial or mocked data, PocketMocker allows
users to manipulate impressions of their behavior in well-defined
ways, such as appearing more fit, more social, or more on-time
than they actually are. Instead of focusing on privacy, we explore
providing users with better management of their smartphone-
derived digital identities. We discuss the design of PocketMocker,
which uses user-initiated context trace recording and replay to
enable objective-driven context mocking. Our evaluation shows
that users want to use PocketMocker, that PocketMocker can
mock popular smartphone apps, and that PocketMocker is usable.

I. INTRODUCTION

With the digital portraits painted by smartphones becoming
ever clearer, we believe it is time to give users more control
over their smartphone-derived digital identities. Many other
components of our digital lives already provide ways to curate
the information we provide in order to mold our digital
personas: users on social networking sites can already make
themselves look more attractive or seem more interesting by
actively selecting the pictures they upload or the activities they
share. While using these online services requires surrendering
some amount of privacy, the active participation they require
provides users with some control over what information they
reveal and the impression they create. In contrast, the passive
data collection that smartphones facilitate represents a danger-
ous simultaneous loss of both privacy and control.

This loss of privacy is not ignored by smartphone plat-
forms. These platforms try to protect users by having apps
request sensitive user data through permission mechanisms.
Unfortunately, the currently used model in Android— where
users have to either install the app with all of its permissions
or not install at all—leave users exposed to two problems:
apps tend to request more than required [1], [2] and users do
not understand why apps request particular permissions [3].
An alternative approach [4] allows users to decide which
permissions to grant, but users have to choose between app

functionality and their privacy because they are unaware how
apps may behave if a particular permission request is rejected.
This leads to users accepting all permissions for the apps they
wish to install despite not fully knowing how that data may be
used. Overall, permissions are not user-centric as apps request
access to data for both legitimate and illegitimate actions: a
navigation app may use location data for both navigating and
for advertising. It is unreasonable to expect users to distinguish
between legitimate and illegitimate information requests, and
burdensome and error-prone to ask them to enable data sources
only when they feel comfortable with what an app is doing.

Our solution takes a different approach. Instead of focusing
on privacy by limiting data collection, we aim to improve
control by generating synthetic or “mocked” data to manipulate
data-driven analytics as directed by the user, an approach we
call objective-driven context mocking. In contrast to privacy,
which aims to limit access to data, mocking reduces the
power of legitimate data by injecting enough mocked data to
achieve user-defined objectives. Unlike privacy, which requires
hiding data and thus potentially impacting apps’ functionality,
mocking ensures that apps continue to function normally
during each mocking session, making it simpler for users to
understand and use.

Our paper makes the following contributions:

1) We introduce objective-driven context mocking, a new
approach to protecting smartphone users’ personal data
that is orthogonal to privacy, and use several examples to
illustrate the power of our approach.

2) We describe the design of PocketMocker, a system enabling
objective-driven context mocking. PocketMocker’s imple-
mentation consists of both Android platform modifications
that allows mocked data to be fed to unsuspecting apps and
an app that controls the mocking process.

3) We evaluate PocketMocker and show it to be both desirable
and effective. Field testing of a PocketMocker prototype
demonstrates that it can successfully mock several popular
apps and users are interested in using it.

The rest of our paper is structured as follows. After
motivating PocketMocker with several examples in Section II,
we describe PocketMocker’s design and implementation in
Sections III and IV. Section V evaluates our PocketMocker
prototype, showing both that PocketMocker works and that
smartphone users are interested in using the capabilities it
provides. We review related work in Section VI, discuss future
plans in Section VII, and conclude in Section VIII.

http://blue.cse.buffalo.edu


II. MOTIVATION

Second only to battery life, recent studies show that privacy
is one of today’s smartphone users’ top concerns with their
devices [5]. Despite the high demand for free ad-driven apps,
43% of users are not willing to share personal information with
a company in exchange for a free app. Fortunately, smartphone
user privacy receives significant attention from academia and
industry. Protecting users’ privacy is a worthwhile goal, but
ironically, we believe privacy itself may be part of the smart-
phone privacy problem.

The reason is that understanding privacy implications re-
quires smartphone users to answer difficult questions. If I
install and use this app, what will it be able to learn about me?
Is all of the data this app collects really necessary? Is this app
using my data for legitimate reasons? Companies are spending
billions of dollars to better profile their users through data
analysis algorithms and few, if any, have a business interest in
releasing how their algorithms work or what they know about
their users. Even with new tools to determine what and how
much data is collected on a smartphone, it is still unknown
how that data is being used.

Obviously users can always choose not to use apps with
which they feel uncomfortable, but that is not an ideal solution
if they are interested in a particular app’s functionality. There
are efforts out there to better protect users through safer app
marketplaces by preventing distribution of malicious apps that
only want to misuse the permission-protected data, but even
non-malicious apps can be problematic. For the average user
who reads email, browses the web, takes pictures and so
on, their privacy may still be at risk to legitimate apps with
legitimate data collection. At this point, users have two very
unattractive options: removing useful apps or not using their
smartphone at all.

To further investigate smartphone user thoughts on privacy,
we distributed an IRB-approved survey—asking about their
thoughts on smartphones knowing their address, friends, ac-
tivity level, income and weight—to students, faculty and staff
of the University at Buffalo1. No incentives were provided
for completing the survey, and all respondents were required
to indicate consent before proceeding to the questions. Over
four days, we recorded 91 responses. First, we found that
respondents to be reasonably suspicious of what apps might
know about them, with 52% indicating that an app might know
at least one personal attribute to a level that we marked as
unreasonable today—such as income and weight—but only
18% indicating that apps might know two attributes of un-
reasonable levels. And when asked about mocking, of the 91
users that completed the survey, 82% wanted to mock at least
one attribute and 60% wanted to mock two, with mocking
users requesting an average of 2.6 mocking attributes each.
Our results show that users are concerned with what their
smartphone may know about them, and users are interested in
the ability to better control their private data on their devices.

It is at that point that mocking has a role to play. In contrast
to the uncertainties caused by privacy, mocking provides
control. Instead of wondering what information an employer

1We discuss this survey in more detail in our concurrent publication
submitted to HotPlanet 2014.

required app collects on a bring-your-own-device, users can
set up mocking objectives that ensure that it appears that they
work regular hours. Instead of wondering which apps might
be collecting information about their drinking habits, users can
set up mocking objectives to conceal their visits to bars. We
believe that this type of control over their digital identities
will be appealing to users, since it is similar to the control
they already have when interacting with other online services.
While Facebook users know that Facebook is collecting data
about them, they also exercise control over the impression they
create. PocketMocker provides smartphone users with the same
control over their smartphone-derived digital identities.

A. Mocking Scenarios and Types

Consider these four scenarios:
• Bob wants to appear more active. Instead of taking real

walks, his smartphone can mock a walk while he sits at his
desk during work hours.
• Alice wants to appear more healthy. While eating at a burger

joint, her smartphone can mock a visit to the local vegetarian
restaurant.
• Teenager Jerry is monitored by a smartphone app installed

by his parents to ensure he is not out past curfew. He
can stay out later-than-allowed with his friends, while his
smartphone mocks his location to return home on time.
• Carol is monitored by a smartphone app setup by her

employer to track attendance and working hours. Despite
leaving for a latte with a friend, her smartphone can mock
her still sitting at her desk.
These examples show that there is indeed a difference

between privacy and mocking. The above objectives are con-
cerned with privacy, but cannot be achieved by making data
more private, thus this is where mocking can have a role
to better protect users. In Jerry and Carol’s case, the apps
could be removed, but the installing party would notice;
or in some instances, uninstalling an app would also mean
forfeiting certain rewards for using it, such is the case with
most “gamified” apps, assuming Bob and Alice are using such
an app. In all cases, removing or disabling an app is not an
attractive or possible option.

These scenarios also illustrate examples of two different
types of mocking: record-and-replay and time shifting.

1) Record and Replay mocking: In record-and-replay
mocking the objective can be directly embedded in the mocked
activity. Bob’s recorded walk inherently makes him appear
more active the more he replays it, and Alice’s visit to the
healthy restaurant makes her appear more healthy. In other
cases, the objective can also be to obscure another activity,
replacing something undesirable with something desirable. As
Alice replays the visit to the healthy restaurant, it provides
cover for her visit to the unhealthy restaurant.

In other cases, PocketMocker users may simply want to
have their smartphones mock staying in one place while they
in fact go to another, as in Carol’s example when she visits with
her friend instead of working. While this behavior is similar
to that offered by traditional record-and-replay systems, this
variant requires PocketMocker be able to extend or loop a
recorded session for an indefinite amount of time in order to
mask an activity and to ensure time continuity between the
mocking trace and the user’s real activity.



App App

Android System

GPS

WiFi and Cell Tower IDs

Location Data Accelerometer

Gyroscope
Sensor 
Data

DataDecoy
Activity

MockerService

Translates 
serialized 
mocked data 
into Java 
objects

SubscribeSubscribeSubscribe Mock 
data

Mock data into “real” data.

Fig. 1: PocketMocker Design. Details are specific to Android
but would be similar on other platforms.

2) Time shift mocking: In time-shift mocking, a user wants
it to appear that something that happened at one time actually
happened at another. Time shifting can move an activity later
or earlier, the later exemplified by Jerry’s example where he
wants his parents to think that he arrived home punctually. We
call the former forward time shifting and the latter backward.

While conceptually similar, forward and backward time
shifting create different design requirements. Backward time
shifting—making something that happens in the future appear
to happen earlier—requires either being able to synthesize a
transition from the current context to the mocked context or
having a pre-recorded trace that accomplishes the same thing.
In Jerry’s example, in order to look like he returned home
early, his smartphone must either be able to create a location
transition from his current location to home, or he must have
previously recorded this transition.

Forward time shifting is somewhat easier, since the user’s
real transition can be recorded, saved, and then held until the
user is ready to replay it at a later point in time. If Carol
wants to leave work early, she can record her transition to
home but then delay it for several hours until the working day
is over. Like record-and-replay, however, this type of mocking
also requires PocketMocker to be able to dwell in a particular
context while the user moves to another by looping a portion
of a pre-recorded context.

III. POCKETMOCKER DESIGN

This section describes the design of the PocketMocker
objective-driven context mocking system. We begin by de-
veloping a set of design requirements based on the mock-
ing scenarios and taxonomy presented previously and outline
the challenges of effective mocking. We then describe how
PocketMocker uses changes to the smartphone platform and a
dedicated app to perform context mocking.

A. Overview

We offer the example of Bob from our earlier scenarios
as an overview of how PocketMocker’s components work
together to deliver objective-driven context mocking. Pocket-
Mocker consists of two parts: modifications to the smartphone
platform needed to record and replay mocking traces, and an
app that interacts with the user to record mocking traces and

control the mocking process. Figure 1 illustrates the interaction
between the two parts of PocketMocker.

Bob knows his objective: to appear more active. All he has
to do now is collect some sample data so PocketMocker can
inject mocked data to the apps on his smartphone when he
wants to be active. First, he must record a mocking trace of
his desired outcome—in this case, the action is taking a walk.
During this phase, PocketMocker records all sensor data—such
as GPS, cell tower metadata, visible WiFi access points and
more—on the device to provide a concrete mocking context.
All of this data combined is known as the mocking trace.

Once the trace is recorded, Bob can replay it as often as
he likes. During the mocking process, PocketMocker exploits
changes to the underlying smartphone platform to satisfy
app requests for real data with time-shifted false numbers
from the mocking trace. While the mocking session is active,
the PocketMocker app displays a notification indicating that
mocking is in progress and how much time remains before
it finishes. After completion, PocketMocker stops returning
mocked data and resumes returning real data to apps.

Based on this use case, we can enumerate several re-
quirements for an objective-driven context mocking system.
First, the user’s objective must be determined and a mocking
activity suggested. Second, a mocking trace must be recorded
and linked to the user’s objective. Finally, the trace must be
deployed as needed to achieve the user’s mocking objective.
We describe how PocketMocker accomplishes these tasks and
overcomes two consistency challenges below.

1) Linking mocking traces and objectives: To begin,
PocketMocker must be able to link mocking traces with user-
defined objectives, so that it knows what trace will achieve
each objective. In Bob’s example, PocketMocker must be able
to associate the trace of Bob taking a walk with Bob’s desire
to appear more active. This process has both a qualitative
and quantitative component. Qualitatively, PocketMocker may
suggest activities that would naturally be linked with a specific
objective. If Bob wants to be more active, he should take a
walk. If Alice wants to appear more healthy, she should eat at
a healthy restaurant, and at the burger joint. PocketMocker’s
app provides a library of objectives (”appear more fit”) and
associated suggestions for mocking traces (”take a walk”). We
also expect users will be well-served by their own intuition.

2) Collecting, storing, and replaying traces: Second,
PocketMocker must be able to collect, store and replay
mocking traces. Trace collection is currently initiated by the
PocketMocker app and performed entirely at the app level.
To ensure that during mocking PocketMocker can return
data from any source consistent with the mocked context,
PocketMocker currently enables all sensors that could provide
relevant information and samples them aggressively, storing
timestamped data in a set of local databases. Unlike trace
collection, mocking trace replay requires platform support.
PocketMocker modifies the underlying smartphone platform
to add an interface allowing it to inject mocked data. Once the
user begins replaying the trace, PocketMocker reads data from
all sensor databases associated with the trace and uses this new
interface to inject it into the platform. Any app requests for
data contained in the mocking then return mocked data.



3) Initiating mocking sessions: Third, PocketMocker’s app
helps the user remember to initiate mocking sessions. Each
recorded trace can be annotated with a frequency which
PocketMocker uses to help prompt the user to deploy the trace.
For example, Bob may want to go for a walk daily, and by
annotating the trace with his goal PocketMocker knows when
to provide reminders.

B. Consistency Challenges

A significant challenge when mocking is addressing dif-
ferences between the mocking context and the real context
to ensure that mocking proceeds consistently. At present
PocketMocker does not attempt to fully defend the mocking
context from suspicious apps—we leave that challenge as
future work. However, PocketMocker still attempts to ensure
that the mocking context is consistent and does not create
obvious problems or physical impossibilities that could either
break app functionality or send an unmistakable signal that
something unusual is happening. First, we look at how Pocket-
Mocker masks differences between the mocking context and
the real context. Then, we address spatial continuity, a specific
consistency problem facing the PocketMocker system.

1) Differences with the mocking context: Here we examine
specific differences between the mocking context and the real
context and address how PocketMocker deals with each case:

• Location: the phone is one place in the mocking context
and another location in the real context. To ensure location
consistency, PocketMocker collects all data associated with
the mocked location. During the mocking session an app
will not only have the mocked location coordinates returned,
but will also see the same Wifi access points and be
connected to the same cell tower with the same signal
strength as it would at the mocked location.

• Device configuration: the accelerometer was not used
during the mocking context but is enabled by an app
in the real context. Here, PocketMocker exploits the fact
that it records all information about the smartphone while
recording the mocking trace, meaning that it can handle
requests to use any device feature during replay.

• Connectivity: the phone was connected during the mocking
context but there is a different or no network connection
available in the real context. There are two cases to con-
sider here. If the smartphone has any connection in the
real context, PocketMocker will allow apps to use that
connection but return mocked connection attributes. So if
the connection is actually over a Wifi network but only
a 3G mobile data network is available, PocketMocker will
establish connections over the available network but tell apps
that they are connected over the mocked Wifi network. At
present PocketMocker makes no attempt to alter connection
properties such as latency or bandwidth of the real connec-
tion to match the mocked connection, and in some cases this
is not possible. We leave dealing with attempts by suspicious
apps to use these properties to pierce the mocking context
as future work. There is also the problem of providing a
mocked connection when no real connection exists. Even
though this is impossible to practically accomplish, we
can synchronize with the real context have PocketMocker
simply return that there is no active data connection because

networks naturally come and go, so this will not look
suspicious to applications that attempt to circumvent the
mocking context.

It is also important to point out that PocketMocker does
not mock: user interaction, battery level and the microphone
readings. While mocking user interaction may be necessary
to mislead certain types of apps, it is not necessary to mock
the apps that PocketMocker currently targets that collect and
interpret data collected passively. More importantly, replaying
interaction would prevent the user from using their smartphone
while mocking was active. Mocking battery levels represents
another continuity challenge; at the time of entering or leav-
ing the mocking context, the battery level will significantly
increase or decrease to match the real or mocking context and
apps can use this jump to detect a context switch has occurred,
thus exposing a hole in the mocking context. Another problem
with mocking battery levels is it creates a confusing user
experience because the user then does not know the current
status of the smartphone, which could have much harsher
consequences, so PocketMocker uses the real battery levels
always. Like battery levels, microphone readings also represent
a continuity challenge which leaves a hole in the mocking
context and we plan on addressing this current limitation of
PocketMocker in the future.

2) Ensuring spatial continuity: Given that smartphones can
and do track their users’ location, and that this information
reveals a great deal about their lives, PocketMocker is designed
to allow mocking location and user movement. However, this
creates a continuity challenge when the mocking trace ends at
a different place from the user’s current location. We discuss in
Section VII how future version of PocketMocker will use user-
generated mocking libraries to be able to synthesize mocking
traces linking any two points where the user has previously
been, but our current prototype has no good way to address
this problem. And while we are currently focusing on mocking
unsuspecting apps and not addressing all attacks apps could
perform on the mocking context, sudden changes in location
are both an all-too-obvious indication of mocking and might
also cause some apps to malfunction.

Currently, PocketMocker works around this challenge by
interacting with the user. While a mocking trace is being
replayed, a notification is displayed informing the user of
the time left before the mocking process completes and the
distance from the user to the location where the trace ends.
Once the trace ends, if the user’s location is close to where
the trace completes PocketMocker will simply allow the trace
to end normally and merge the real and mocking context. If the
user is not close to where the trace completes, PocketMocker
generates an notification asking the user to either reach the
correct location or allow the spatial discontinuity. Until the
user responds to the dialog or reaches the required location,
PocketMocker continues to mock them at the mocking traces
final location, using the lingering capability described next.
This also allows PocketMocker to perform backward time
shifting on an existing trace. In Jerry’s example, when it is
time to return home he initiates a pre-recorded trace of his
return. Once his trace reaches home, it will linger there until
he arrives.



C. Lingering

In addition to the record-and-replay functionality we have
already described, PocketMocker also supports lingering. Lin-
gering is a mocking primitive that can be used in several ways:
to time-extend a mocking trace, to conceal an undesirable
activity, or to perform time-shift mocking. In the scenarios
described earlier both Alice, Jerry, and Carol’s mocking activ-
ities require this capability. Carol uses lingering to conceal her
coffee break, Jerry uses it to time-shift his return home, and
Alice uses it to time-extend her visit to the healthy restaurant
to match the time she spends eating fast food.

To linger, PocketMocker records a small amount of context
at a particular location and then replays it repeatedly. To make
the data delivered to apps during the lingering process more
realistic, and prevent apps from detecting the mocking process
by observing repeated readings, PocketMocker injects noise
into the data returned during the lingering session, performing
small changes to the reported location, sensor readings, scan
results, and signal strengths.

To time-extend a trace, the app allows users to indicate
linger points during trace recording. During replay, once the
trace reaches a linger point PocketMocker will linger until
instructed to proceed by the user. Once Alice is ready to leave
the fast-food restaurant, she tells PocketMocker to proceed
past the linger point she inserted into her trace of visiting
the healthy restaurant. To conceal an undesirable activity, the
PocketMocker app allows lingering to be initiated at any time.
A small amount of context is recorded and then replayed until
the lingering session is canceled. So Carol can initiate the
lingering session at work, and then bring her phone to her
coffee break while appearing to remain at work.

Forward-shifting a trace is a three-step process. First,
PocketMocker collects a small amount of context at the current
location in order to linger and begins the lingering process.
Second, PocketMocker records a user moving to a new location
while continuing to return lingering data. Finally, once the user
is ready to merge their real and mocked context, PocketMocker
stops lingering and begins replaying the transition trace until
the user reaches their current location.

IV. IMPLEMENTATION

We implemented a PocketMocker prototype on Android
4.2.2 “Jelly Bean”, Android being the only open-source smart-
phone platform permitting the platform modifications Pocket-
Mocker requires. Our current prototype supports recording
and replaying context traces and mocking location, available
networks and signal strengths, and sensors including the GPS,
accelerometer and gyroscopes. We have deployed our proto-
type on the Samsung Galaxy Nexus smartphone [6] which was
used for the experiments in Section V.

We considered implementing PocketMocker support in
two ways: either by modifying Android platform services,
or by making changes to the underlying Linux kernel. Most
Android platform services provide thin wrappers around low-
level Linux interfaces in order to provide and protect Android
interfaces to modifying core smartphone features. For example,
the WifiManager Android interface for switching access
points translates requests from apps with permission to use

the interface into the appropriate manipulations of the wireless
connection state using tools that unprivileged Android apps
lack the permissions to use. Because Android apps typically
use Android’s service interfaces to collect information about
the device, such as determining the access point that the
smartphone is currently associated with, it is possible to
implement successful mocking with these services and fool
many apps.

Unfortunately, the underlying Linux interfaces on Android
leak a great deal of information about the state of the system
that apps could use to pierce the mocking context. For exam-
ple, reading /prot/net/arp allows an unprivileged app to
determine the access point the smartphone is associated with in
the same way as a call to the WifiManager Android service.
So implementing mocking only within the Android platform is
not sufficient to fully secure the mocking context, since apps
may be able to bypass services participating in the mocked
process. The most secure way to implement mocking would
be to make changes to the Linux kernel itself to ensure that
all information provided by the system would be consistent.

At present, however, our current PocketMocker prototype
is implemented as a set of changes to Android. This is for
two reasons. First, PocketMocker is currently designed to fool
unsuspecting apps, and we have left as future work the task of
exploring ways apps could attack the mocking context and
effective PocketMocker countermeasures, including moving
mocking support into Linux itself. Our evaluation demonstrates
that platform changes are sufficient to mock many different
apps. Second, modifying Android reduced the developer effort
needed to produce a working prototype.

The architecture of PocketMocker consists of two major
components, one sitting in the app layer and the other in the
Android platform. We handle user interaction, data logging and
data replaying in the app layer. In the platform, we have made
modifications allowing PocketMocker to notify user-installed
apps of mocked location and sensory updates through their
respective Java classes.

Our implementation of record and replay is user initi-
ated at the app-level. When a user begins the recording
process, PocketMocker aggressively logs device event data—
including all sensors, GPS updates, cell tower updates and
WiFi updates—to its SQLite datastore. By storing this data
at the app-level, we can synchronize event broadcasts at the
app-level by having the platform listen for updates from the
PocketMocker replay service, a standard Android Service.
The replay service works by reading events from the datastore
in chronological order and notifying modified managers in the
platform of the mocked data.

We have instrumented changes to the Android
platform that allows each of the associated managers
(SensorManager, LocationManager, WifiManager
and TelephonyManager) to communicate with the
PocketMocker replay service. The managers implement
Messenger handlers to receive Messages from external
channels and communicate with the replay service. On
construction, a modified manager sends a Message to the
replay service, notifying the service of its existence and
establishing a bidirectional channel of communication. On
receipt of a Message containing mocked data from the replay



App Waze Social Maps & Traffic

Installs 10–50 million
Mocking Objective Mock location

Trace Length 2 minutes 27 seconds
Trace Size 516 K
Location Mocks 117
Sensors Used GPS, Gyroscope, Accelerometer
Sensor Mocks 2773
Wifi Scan Mocks 115
Cell Location Mocks 117
Video URL http://youtu.be/GIqXP6b769c

TABLE I: Details of Mocking Waze

service, we call all callbacks registered with the manager, e.g.
LocationListener.onLocationChanged, with the
newly received mocked data. To preserve the integrity of the
mocking context, real sensor events are prevented from being
published to apps when PocketMocker is in replay-mode.

V. EVALUATION

We continue by demonstrating that our PocketMocker
prototype works by using it to mock three smartphone apps.
In each case we describe the app, discuss why users might
want to mock it, describe our specific mocking objective and
whether it was achieved.

A. Mocking Maps

As a first example of PocketMocker in action, we mock
the Waze maps app [7]. Waze describes itself as a community-
based traffic and navigation app allowing “millions of drivers
from across the globe joining forces to outsmart traffic, save
time, gas money, and improve daily commuting for all”.

Our objective in mocking Waze was to show that Pocket-
Mocker can provide fine-grained location to the many smart-
phone apps that use location to customize the user experience.
Given the amount of information smartphone users’ location
can reveal about them, it is important for PocketMocker to
effectively support location mocking. In our next mocking
example we show the effect that mocked locations can have
on an unsuspecting app.

To mock Waze, We first recorded a mocking trace of a
walk around campus, described in more detail in Table I. This
included tracking location, connectivity, and sensor data from
the gyroscope and accelerometer that Waze utilizes. We then
placed the smartphone on a desk, initiated a replay session and
launched the Waze app. Figure 2 shows three screenshots of
Waze being mocked, showing that the users location is being
updated to follow the trace despite the smartphone not moving.
An anonymized video of our successful Waze mocking session
is also available at http://youtu.be/GIqXP6b769c.

B. Mocking Checkins

As an example of a more realistic mocking scenario, we
used PocketMocker to mock the popular Facebook app [8].
Facebook is the world’s largest social networking site and its
Android app is quite popular, with the Play Store estimating

App Facebook

Installs 500–1,000 million
Mocking Objective Check-in at mocked location.

Trace Length 1 minute 37 seconds
Trace Size 268 K
Location Mocks 106
Uses Sensors GPS, Accelerometer
Sensor Mocks 2569
Wifi Scan Mocks 0
Cell Location Mocks 97
Video URL http://youtu.be/R8L6OV8hY2k

TABLE II: Details of Mocking Facebook

between 500 million and 1 billion installs. People use Face-
book to share content and stay in touch with friends.

Our objective in mocking Facebook was to initiate a check-
in at a mocked location. Facebook check-ins are shared with
friends (and advertisers), so a user may want to create a
fraudulent check-in for many reasons. It could be health-
related, like our Alice, so different ads are displayed when
the user visits the website, or it could be reputation-related as
a user may want to appear more social than they really are.

To mock a Facebook check-in, we recorded a mocking
trace of a walk to the nearby Starbucks, which included
location, connectivity, and sensor data from the accelerometer.
Because the trace was collected outdoors, no Wifi scan data
was captured. We then placed the smartphone on a desk,
initiated a replay session and launched the Facebook app.
Figure 3 shows three screenshows of Facebook being mocked
demonstrating that Facebook did allow us to check in at
Starbucks at the end of the trace despite the smartphone not
being located nearby.

C. Mocking a Game

As a final mocking challenge, we attempted to use Pocket-
Mocker to mock an accelerometer-driven game. Fast Racing
3D is a car racing game available for Android [9]. Gaming is
a popular activity on smartphones, with studies showing that
32 % of time spent on smartphones being devoted to game
play [10]. While PocketMocker normally records sensor data
aggressively during recording in order to ensure that it collects
a superset of any information that could be requested during
the mocking session, games provide a particular challenge for
replay due to their aggressive use of high-rate sensor data—in
this case, the accelerometer.

Our objective in mocking Fast Racing was to use the
mocked trace to control gameplay during the mocking session.
Users may want to mock apps for several reasons: to avoid
tedious replay of easier levels on apps that force players
to begin again after failing more difficult challenges, or to
improve their reputation through repetition when using apps
that post scores to a public leaderboard.

To mock Fast Racing gameplay we recorded a mocking
trace of a portion of a trip through one of the game’s race
courses. This included tracking location, connectivity, as well
as sensor data from the accelerometer used to control the
vehicle. We then placed the smartphone on a desk, launched



(a) (b) (c)

Fig. 2: Mocking Waze. The screenshots demonstrate that we were successfully able to mock the Waze maps app. As the mocking
trace is replayed, the phone remains stationary on the desk, but Waze thinks that the user is walking around.

(a) (b) (c)

Fig. 3: Mocking Facebook. The screenshots show that we were able to mock the Facebook app and initiate a check-in at
Starbucks from a half-mile away.

App Fast Racing 3D

Installs 50–100 million
Mocking Objective Control game play

Uses Sensors Accelerometer
Trace Length 1 minute 35 seconds
Trace Size 296 K
Location Mocks 96
Uses Sensors GPS, Accelerometer
Sensor Mocks 1363
Wifi Scan Mocks 96
Cell Location Mocks 96
Video URL http://youtu.be/8fAj5dYFwS0

TABLE III: Details of Mocking Fast Racing

the Fast Racing app, and initiated trace replay. Figure 4 shows
three screenshots of Fast Racing being mocked demonstrating
that the accelerometer data was able to control the Fast Racing
vehicle. For this particular scenario, however, we found it
difficult to trigger the mocking replay at precisely the correct
moment, with the associated time delay causing the vehicle’s
path to eventually deviate from the original trace as the
mocking session continued. An anonymized video of our semi-
successful Fast Racing mocking session is also available at
http://youtu.be/8fAj5dYFwS0.

D. Users Can Use PocketMocker

With a prototype implemented, we wanted to gain a quali-
tative insight to future users of PocketMocker. Over the course
of one day, we had 7 users use our most recent record-and-
replay prototype. Due to physical limitations, we studied users
individually with one Galaxy Nexus smartphone.

After receiving some background information on the
project and instructions on how to use PocketMocker, users
were given the smartphone with the goal of tricking an open-
source Pedometer [11] that they were walking (and being ac-
tive beings), while the phone was sitting on the desk in the lab.
We wanted to receive feedback on the app, the idea, and the
process, so we collected responses to the following questions
after they saw PocketMocker in action: “Did PocketMocker
mock the Pedometer?” and “Comments?”. All users reacted
positively, with one who “would love to use it for some other
apps” and 42% of our users believe it has strong “potential”.

The users found the app and process to be extremely
transparent: all that was needed was to open the app, create
an objective, hit record, and forget about it. In all cases,
PocketMocker was able to trick the Pedometer into classifying
the phone’s action as walking—by showing steps increase—
when the phone was really sitting idle on a desk.

VI. RELATED WORK

While PocketMocker is the first system to provide
objective-driven context mocking, worries about smartphone
app data collection have led to a number of previous efforts
in this area. First, we focus on the approaches similar to
PocketMocker which deny apps access to data by returning
faked data. Then, we look at novel ways to detect malicious
apps or malicious app behavior through static analsysis and
information flow tracking. Finally, we examine proposals to
improve the Android’s permission model to make it more
effective and user-friendly.



(a) (b) (c)

Fig. 4: Mocking Fast Racing. The screenshots show that we were able to mock the accelerometer-driven Fast Racing game.

A. Mocking Approaches

AppFence [12] is one example that uses data shadowing,
blocking, and mocking to selectively deny data to apps on a
per-permission basis. When apps request data the user has cho-
sen to deny them, such as their phone number or email address,
empty or fixed bogus values are returned. MockDroid [13] is
another example of a similar system. Both these approaches
focus on achieving privacy by limiting access to data, rather
than achieving user objectives by manipulating data that apps
do have access to, and we consider these efforts orthogonal.

B. Record and Replay

PocketMocker utilizes the idea of record and replay as
a first attempt of implementing objective-driven mocking on
Android. Record and replay is not a new concept in general,
but there has recently been a focus on instrumenting this
type of procedure on mobile devices [14]. There are a few
systems in existence, but the majority of research efforts for
this type of system seems to be focused on developer testing
and app performance. For instance, there is RERAN [15],
which captures input events at the filesystem level for later
programmatic replay; another example of such a testing system
is VanarSera [16], which records event data then distributes it
to multiple “monkeys” or slave devices for parallel testing;
there is also AppInsight [17], an app-layer instrumentation
that helps identify critical paths in per-app user transactions.
Despite this focus, there is interest in using record and replay
systems to bring permission issues to light [18].

C. Permissions Improvements

A number of previous systems have explored ways to
overcome Android’s “take-it-or-leave-it” permission model by
allowing apps to run but selectively denying them access to
information that they think they can access. There are other
approaches out there to try to amend this model by allowing
users to decide which permissions to accept [4], but users
could accidentally reduce app functionality by rejecting a
particular permission. Giving users the ability to selectively
accept permissions does not fix the current permissions model
because many apps request permissions for private data that
are necessary only to third-party components, like advertising
libraries [19]. To thwart this, AdDroid separates the requested
permissions by advertiser-required and application-required.

VII. FUTURE WORK

By enabling objective-driven context mocking, Pocket-
Mocker opens up many new directions for future work.

A. Improving security and user experience

While we have demonstrated that PocketMocker can ef-
fectively mock unsuspecting smartphone apps, its security and
user experience can still be further improved. Because of its
implementation at the platform-level, there are possibilities for
apps to know when they are being mocked. For example, they
can read data directly from the kernel instead of calling through
the Android platform. Our next step is to better protect Pocket-
Mocker by making changes at the kernel level. Another flaw
with the current prototype is that mocking happens globally,
meaning all user-installed apps are mocked when replaying
mocked data. This can cause a problem if a user wants to
use a user-installed navigator, but still want to mock another
app while driving. We are working towards user-specified app
mocking, so only apps selected by the user are mocked.

B. White hat data analytics

Currently the process of linking user objectives with mock-
ing traces is qualitative in nature: PocketMocker can suggest
that a user interested in seeming more fit take a walk. We want
to be able to provide users quantitative information as well,
such as how apps are using their behavioral data to classify
them. We will be augmenting PocketMocker with a library of
open-source data analysis algorithms, so users can see how
their data might be used to determine who they are. These
open-source algorithms—or white hat data analytics—can also
be used to help a user find out how well their mocking traces
are working.

C. Sharing mocking traces

PocketMocker is also limited by the device owner’s previ-
ously recorded actions. While this is a powerful primitive, it is
also limited, including in ways that complicate PocketMocker’s
task of preserving spatial continuity as described previously.
We can grow their dataset in the background as they go about
their daily routine by performing location-driven and battery-
permitting recordings. There is also potential for users to share
mocking traces, which would allow users to replay activity that
they never performed, thus providing them even more options
to shape their digital identity.



D. Mocking to test

Finally, mocking can be used as a developer tool. By
adding mocking support to Android, developers can test in a far
more realistic way than ever before. For example, a developer
building a new navigator would be able to provide all required
sensor data and see how the app performs with real data while
still sitting at a desk.

VIII. CONCLUSION

In this paper, we have introduced the notion of objective-
driven context mocking to help users protect their digital
personas on their mobile devices. We have discussed Pocket-
Mocker, a prototype implementing a record and replay system
to evaluate the idea of objective-driven mocking and mocking
sensor data in general. Through our case studies, we have
found the prototype was able to mislead multiple apps with
minimal overhead. Not only did we find that this was techni-
cally feasible, but users are excited about the idea of being able
to mock their data and want to be able to use PocketMocker
in the future to protect their digital identities.

REFERENCES

[1] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
1–6. [Online]. Available: http://dl.acm.org/citation.cfm?id=1924943.
1924971

[2] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference
on Computer and communications security, ser. CCS ’11. New
York, NY, USA: ACM, 2011, pp. 627–638. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046779

[3] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: user attention, comprehension, and behavior,” in
Proceedings of the Eighth Symposium on Usable Privacy and Security,
ser. SOUPS ’12. New York, NY, USA: ACM, 2012, pp. 3:1–3:14.
[Online]. Available: http://doi.acm.org/10.1145/2335356.2335360

[4] M. Nauman, S. Khan, and X. Zhang, “Apex: extending android
permission model and enforcement with user-defined runtime
constraints,” in Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security, ser. ASIACCS
’10. New York, NY, USA: ACM, 2010, pp. 328–332. [Online].
Available: http://doi.acm.org/10.1145/1755688.1755732

[5] “Mobile Privacy: A User’s Perspective,” http://www.truste.com/why
TRUSTe privacy services/harris-mobile-survey/.

[6] “Samsung galaxy nexus,” http://en.wikipedia.org/wiki/Galaxy Nexus.

[7] “Waze social gps maps and traffic,” https://play.google.com/store/apps/
details?id=com.waze.

[8] “Facebook,” https://play.google.com/store/apps/details?id=com.
facebook.katana.

[9] “Fast racing 3d,” https://play.google.com/store/apps/details?id=com.
julian.fastracing.

[10] “What are smartphones for? apps and gaming,”
http://www.themalaymailonline.com/tech-gadgets/article/
what-are-smartphones-for-apps-and-gaming.

[11] “Pedometer,” http://code.google.com/p/pedometer/.

[12] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: retrofitting android to protect
data from imperious applications,” in Proceedings of the 18th ACM
conference on Computer and communications security, ser. CCS ’11.
New York, NY, USA: ACM, 2011, pp. 639–652. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046780

[13] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid: trading
privacy for application functionality on smartphones,” in Proceedings
of the 12th Workshop on Mobile Computing Systems and Applications,
ser. HotMobile ’11. New York, NY, USA: ACM, 2011, pp. 49–54.
[Online]. Available: http://doi.acm.org/10.1145/2184489.2184500

[14] J. Flinn and Z. M. Mao, “Can deterministic replay be an enabling
tool for mobile computing?” in Proceedings of the 12th Workshop
on Mobile Computing Systems and Applications, ser. HotMobile ’11.
New York, NY, USA: ACM, 2011, pp. 84–89. [Online]. Available:
http://doi.acm.org/10.1145/2184489.2184507

[15] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: timing-and
touch-sensitive record and replay for android,” in Software Engineering
(ICSE), 2013 35th International Conference on. IEEE, 2013, pp. 72–
81.

[16] L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan, “Automatic
and Scalable Fault Detection for Mobile Applications,” in Proceedings
of the 13th International Conference on Mobile Systems, Applications,
and Services (MobiSys), 2014.

[17] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and
S. Shayandeh, “Appinsight: Mobile app performance monitoring in the
wild,” in Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 107–120. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2387880.2387891

[18] L. Yang, N. Boushehrinejadmoradi, P. Roy, V. Ganapathy, and
L. Iftode, “Short paper: Enhancing users’ comprehension of android
permissions,” in Proceedings of the Second ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, ser. SPSM
’12. New York, NY, USA: ACM, 2012, pp. 21–26. [Online].
Available: http://doi.acm.org/10.1145/2381934.2381940

[19] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “Addroid:
Privilege separation for applications and advertisers in android,”
in Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security, ser. ASIACCS ’12. New
York, NY, USA: ACM, 2012, pp. 71–72. [Online]. Available:

http://doi.acm.org/10.1145/2414456.2414498

http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://doi.acm.org/10.1145/2046707.2046779
http://doi.acm.org/10.1145/2335356.2335360
http://doi.acm.org/10.1145/1755688.1755732
http://www.truste.com/why_TRUSTe_privacy_services/harris-mobile-survey/
http://www.truste.com/why_TRUSTe_privacy_services/harris-mobile-survey/
http://en.wikipedia.org/wiki/Galaxy_Nexus
https://play.google.com/store/apps/details?id=com.waze
https://play.google.com/store/apps/details?id=com.waze
https://play.google.com/store/apps/details?id=com.facebook.katana
https://play.google.com/store/apps/details?id=com.facebook.katana
https://play.google.com/store/apps/details?id=com.julian.fastracing
https://play.google.com/store/apps/details?id=com.julian.fastracing
http://www.themalaymailonline.com/tech-gadgets/article/what-are-smartphones-for-apps-and-gaming
http://www.themalaymailonline.com/tech-gadgets/article/what-are-smartphones-for-apps-and-gaming
http://code.google.com/p/pedometer/
http://doi.acm.org/10.1145/2046707.2046780
http://doi.acm.org/10.1145/2184489.2184500
http://doi.acm.org/10.1145/2184489.2184507
http://dl.acm.org/citation.cfm?id=2387880.2387891
http://doi.acm.org/10.1145/2381934.2381940
http://doi.acm.org/10.1145/2414456.2414498

	Introduction
	Motivation
	Mocking Scenarios and Types
	Record and Replay mocking
	Time shift mocking


	PocketMocker Design
	Overview
	Linking mocking traces and objectives
	Collecting, storing, and replaying traces
	Initiating mocking sessions

	Consistency Challenges
	Differences with the mocking context
	Ensuring spatial continuity

	Lingering

	Implementation
	Evaluation
	Mocking Maps
	Mocking Checkins
	Mocking a Game
	Users Can Use PocketMocker

	Related Work
	Mocking Approaches
	Record and Replay
	Permissions Improvements

	Future Work
	Improving security and user experience
	White hat data analytics
	Sharing mocking traces
	Mocking to test

	Conclusion
	References

