
40% CPU
20% CPU

60% CPU

80% CPU

100% CPU

New Interfaces for Achieving Power Agility on Mobile Devices

Making ineffciency allocation explicit requires new interfaces
between the application, OS, and hardware. At the application-OS
interface we introduce resource requests allowing applications to
explicitly distribute their allocated ineffciency between components
with effciency-performance tradeoffs. At the OS-hardware interface
we communicate energy requirements directly to hardware using
energy constraints.

Applications can use either automated tuning libraries (1) or explicit
code annotations (2) to determine how to allocate energy between
hardware components to maximize performance. This allows our
power-agile design to support both unmodifed legacy apps as well
as ones rewritten to use the resource request mechanism.

These requests are communicated to the operating system (3),
which maintains a per-task ineffciency allocation (4) representing
that tasks ability to consume extra energy to improve performance.
After validating each resource request (5), the OS uses the request
to set per-component hardware energy constraints (6) directly.
Hardware components then run as fast as possible without
exceeding their ineffciency constraint, allowing hardware to
conserve energy on timescales that cannot be managed by the OS.

Cross-Component Choices
Multiple components with effciency-performance trade-offs force
applications to make choices about how to allocate available
energy to achieve the best performance. Incorrect component
tuning can degrade performance and waste energy.

Allocating Ineffciency

Power-Agile System Architecture

Motivation
Efficiency vs. Performance Tradeoffs

Energy-constrained mobile devices integrate multiple hardware
components with inherent trade-offs between performance and
effciency. As performance increases, effciency in terms of
work-per-joule decreases.

 Component Performance Metric

CPU Speed

Memory Bandwidth

Wifi Latency

Example Hardware
Performance-Effciency Trade-offs

1 2 3 4 5 6 7 8

Time

0.25

0.50

0.75

1.00

1.25

1.50

P
o

w
e

r
(

W
)

Processor

Radio

Storage

Memory

— B Interactive B —

0

2

4

6

8

10

12

14

C
y

c
le

s
P

e
r

I
n

s
tr

u
c

ti
o

n
(C

P
I

)

Instantaneous CPI

0 2 4 6 8 10

Time (s)

0

1

2

3

Average CPI

Design Goals Status and Challenges

Application

Energy

CPU NetworkMemory

? ??How much

Guru Prasad, Scott Haseley, Geoffrey Challen
University at Buffalo

{gurupras,shaseley,challen}@buffalo.edu

Rizwana Begum, Mark Hempstead
Drexel University

{rb639,mhempstead}@drexel.edu

Since application needs
c h a n g e o v e r t i m e ,
maintaining a correct cross-
c o m p o n e n t a l l o c a t i o n
requires frequent changes to
device settings to respond to
a p p l i c a t i o n n e e d s . We
defne the ability of a
device to select and
transition to right set of
components and their
settings as power agility.

Application Phases

http://blue.cse.buffalo.edu

Only slow down to save energy. Because they do not
consider effciency-performance tradeoffs, rate limiting approaches
can waste energy and degrade performance.

Make application energy allocation explicit. Don't rely
on the OS to guess changing application energy-performance
dependencies and make cross-component energy allocations.

Constrain energy, not performance. Instead of treating
energy usage as a side effect of hardware performance settings,
allow hardware to maximize energy-constrained performance.

We defne ineffciency as the amount of extra energy used while
executing a task above the minimum energy (E

min
) the task required

to execute:

A portion of this extra energy (E
perf

) improves performance, while a
portion (E

waste
) does not improve performance and is wasted.

Allocating a task ineffciency allows it to use extra energy to run
faster but does not interfere with scheduling or stop tasks from
running. Because ineffciency allocation never “saves” energy only
by delaying work, it is a particularly good ft for interactive tasks.

Our current power-agile system design allocates ineffciency
proportional to scheduling priorities, allowing simple integration with
existing task prioritization.

Challenges and Future Work
● Tasks accessing shared components on multicore systems may
have allocated them different amounts of ineffciency. Reordering
within the scheduling queue may help align resource requests.

● While hardware improvements are reducing the transition latency
between voltage and frequency domains, other components may still
present high overhead to change energy constraints.

● Until hardware components support energy constraints directly,
supporting legacy hardware will require drivers that can map energy
constraints to performance settings.

● Ineffciency provides a natural model for identifying opportunities to
enable race-to-sleep behavior when sleep states are available and
idle costs are high, but this is unaddressed in our current design.

● More work at the OS-hardware level will be required to integrate new
hardware features with energy-performance implications such as
computational sprinting.

AgileAndroid
We are implementing a power-agile smartphone platform
called AgileAndroid based on the Android Open Source Project
(AOSP) platform sources. Our modifed operating system and
platform will run both in the gem5 simulator, to enable hardware
experimentation, and on existing Android smartphones. We
have added support for dynamic voltage and frequency
(DVFS) scaled cores and memory to gem5.

http://dpac.ece.drexel.edu/

