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Abstract—Optimal control of Heating, Ventilation, and Air
Conditioning (HVAC) is an important step towards reducing
the carbon footprint of buildings and requires balancing energy
reductions and occupant comfort. Conventional thermostats for
temperature set points provide a centralised single point of
user input, often leading to significant thermal discomfort for
occupants. We propose to instead include users in the HVAC
control loop through distributed smart-phone based votes about
their thermal comfort for aggregated control of HVAC. Unlike
existing approaches that require in-situ sensors or build complex
comfort models of individual users, we propose a model- and
sensor-free HVAC control algorithm that uses simple user input
(hot/cold) and adapts to changing office occupancy or ambient
temperature in real time. We develop an iterative data fusion
algorithm that finds optimal temperature in offices with multiple
users and propose techniques that can aggressively save energy by
drifting indoor temperatures towards the outdoor temperature.
Our evaluation is based on empirical data collected in 12 offices
over a 3-week period and shows that adaptive HVAC control can
save up to 60% of energy at a relatively small increase of 0.3◦C
in average occupant discomfort.

I. INTRODUCTION

Reducing energy consumption of residential and commer-
cial buildings is an important problem that has attracted the
attention of several research groups in recent years [9]–[12].
Heating, ventilation, and air-conditioning (HVAC) has been
singled out as the most important contributor to greenhouse
gas emissions; it comprises as much as one-third of energy
consumption in the United States [7]. Some studies suggest
that up to 30% of this energy can be saved by duty-cycling
HVAC when residents are sleeping or away [13].

As a result, the most popular approach to improving energy
usage of HVAC is to aggressively duty-cycle its operation
based on the occupancy of air-conditioning zones. A variety of
wireless networked sensors, such as cameras, passive infrared
(PIR), or door sensors have been used to estimate building
occupancy. Once room or zone occupancy can be established,
the HVAC system can be duty-cycled in real-time to save
energy [2], [16]. More advanced approaches use multivariate
Gaussian and Markov chain models [7] or hidden Markov
models [13] to learn and predict occupancy patterns based on
historical data to achieve further energy reduction. Overall, the
studies have demonstrated dramatic reductions of up to 42% in
HVAC energy usage in commercial buildings [7] and 28% in
residential buildings [13]. Furthermore, users tend to change

their behavior towards sustainability if given better visibility
of the impact and cost of their actions [10].

Achieving high energy savings without considering thermal
comfort of users is unrealistic. A simple strategy of setting the
temperature setpoint to the ambient temperature would achieve
the maximum savings, but could also have negative impact
on the comfort and productivity of people. Most techniques,
therefore, optimize energy consumption of HVAC within the
acceptable thermal comfort bounds, as defined, for example,
in the American Society of Heating, Refrigerating and Air-
Conditioning (ASHRAE) comfort standards [3].

Thermal comfort of individuals is a subjective metric and is
commonly modeled solely through temperature. The simplistic
temperature-based comfort estimation, however, may yield
errors and thus more advanced models for thermal comfort
have been proposed, such as Fanger’s Predicted Mean Vote
(PMV) [14]. Both these models require accurate sensing
of environmental parameters in each air-conditioning zone,
which typically incurs high overheads for installation and
maintenance of sensors. Furthermore, some thermal comfort
parameters, such as clothing insulation and metabolism levels,
are subjective and difficult to measure in an automated way.
Commonly these parameters are estimated by experts [4] or
are obtained through user feedback [17], which is expensive
and not scalable. Reliable thermal comfort estimation in field
deployments thus remains one of the main barriers to wide-
spread use of advanced HVAC technology today.

In this work, we propose a model- and sensor-free approach
for estimating thermal comfort of people and optimal control
of HVAC by placing humans in-the-loop. We build on ideas
presented in Thermovote, a smart-phone based participatory
sensing of thermal comfort developed by Erickson et al [8].
The beauty of our approach is that it requires neither the
deployment of additional environmental sensors in the building
nor complex models for estimating thermal comfort of users,
as it works with user comfort input directly and is capable
of estimating building occupancy automatically using smart-
phone data.

In contrast to other participatory sensing techniques, such
as Thermovote, we do not attempt to model the PMV comfort
metric based on user surveys. Instead, we take a simple
approach and manipulate temperature directly based on user
input, i.e., we increase the indoor temperature when people
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Fig. 1. Model-free and sensor-free HVAC
control using smart-phone feedback.

Fig. 2. User interface of
our iPhone application.

are cold and decrease it when they are hot. We propose
an iterative algorithm to find the optimal temperature for a
group of people based on real-time user input. The model-
free aspect of our algorithm allows us to use a considerably
simpler user input, than the relatively cumbersome 7-point
ASHRAE comfort metric adopted by the industry. In addition
to optimizing the temperature to maximize user comfort, we
also implement several mechanisms to reduce HVAC energy
consumption. Specifically, letting the indoor temperature drift
towards the ambient outdoor temperature saves a significant
amount of energy at a relatively minor increase in the required
user input.

We evaluate our algorithms in empirically-based simula-
tions. We built a wireless sensor network to measure tem-
perature, humidity, and office occupancy of a building with 3
HVAC zones and developed a PC application for surveying
thermal comfort of building occupants. We also obtained
access to our building management and control system (BMS),
through which we control temperature in individual HVAC
zones. We use empirical data gathered in this manner to eval-
uate the performance of different HVAC control algorithms.
We demonstrate that the optimal temperature in shared offices
can be found reliably based on simple multi-user input. Our
algorithm adapts well to people arriving and leaving the office
and to changes in the outdoor ambient temperature in different
weather seasons. Compared to the existing HVAC control in
our building, our basic participatory system reduces energy
usage of HVAC by 10% at a slightly worse thermal comfort
of people. This is despite the fact that the existing baseline
HVAC control sets the temperature to an optimal value based
on user feedback and our building follows a strict policy of
turning off the HVAC outside office hours. Our additional
energy saving mechanisms, which we refer to as Drift, help to
decrease the energy usage of HVAC by a further 50% while
requiring slightly more user votes.

II. SYSTEM ARCHITECTURE

We propose a model- and sensor-free system to control
HVAC through participatory sensing of thermal comfort of
users. As shown in Fig. 1, the system relies on two main
sources of information: (1) the building control and man-
agement software (BMS); and (2) an application installed on
users’ smart phones. This application functions as an implicit
occupancy sensor.

Where possible, data from the BMS (including the current
indoor and outdoor temperatures) is shown to the user. How-
ever, our algorithm does not require that such information
be present. It is sufficient that the BMS provide a means
of changing the temperature set-point, and that some source
of outdoor temperature data is available. If the BMS does
not provide infromation on the outdoor temperature, online
sources may be used.

Sensed data is processed on a centralized server which takes
two main courses of action. It changes indoor temperature to
satisfy thermal comfort of the occupants and generates data
that is displayed on smart-phones in real time. We aim to
promote behavior change towards greater sustainability, give
users a sense of ownership over the HVAC control, and enable
groups of people to reach a temperature compromise.

The system closes the loop between sensing and actuation
on a building scale without requiring the deployment of any
additional occupancy or temperature sensors. Those sensors
which are already present for the BMS are harnessed to
provide user feedback.

A. Smart-Phone Application

We have developed a prototype iOS application as shown
in Fig. 2. The application provides an interface for submitting
the current comfort vote using simple icons in the bottom of
the screen. Users can vote at any time. However, as we will
explain in Sec. III only the last vote of a user in a given period
is counted to prevent users taking advantage of the system.

The application also plots historical data for indoor and
outdoor temperatures as well as the current HVAC temperature
set-point. This information provides users with feedback on
their actions and gives them detailed visibility into the current
state and performance of the HVAC system. The temperature
data is obtained from the BMS. If outdoor temperature is not
available through BMS, it can be downloaded from weather
forecasting websites. This enables operation in a truly sensor-
free environment.

Finally, we show a pie-chart of the thermal preferences of all
other people in the office. We expect people to moderate their
votes to reach an office-wide compromise on the temperature
set-point.

B. Data Collection and Fusion Server

We implemented a data fusion algorithm running on a
central server for estimating the average discomfort of people
in the office based on the data collected from users. We
work directly with user comfort data and define the optimal
temperature as the one that balances the number of people



that are too hot and too cold. If the two categories become
unbalanced, for example, when the temperature or occupancy
changes, we iteratively adjust the HVAC temperature until a
new equilibrium is found. The system has a secondary goal
of reducing energy usage while staying within the acceptable
thermal comfort bounds. This maximises acceptable energy
savings. More details are provided in Sec. III.

Our central server has multiple functions. In addition to
actuating HVAC based on the fused user input, it also compiles
information that is displayed on the phones, to provide users
with feedback on the group voting process and on the HVAC
status. We rely on BMS to provide us with the control of
indoor temperature set-points, sensing of indoor temperature,
and duty cycling of HVAC in individual zones. In our experi-
ence, even the most basic HVAC control systems expose such
information through a programmatic interface.

It is important to note that the use of this data does
not detract from the sensor-free nature of our system. Our
algorithm merely requires that the BMS provide a means
of changing the temperature set-point. This is a fundamental
requirement for a useful BMS. Additional information, such
as indoor/outdoor temperatures, is desirable in that it enables
richer user feedback, but is not required.

III. DATA FUSION STRATEGIES

In this section, we introduce a data fusion algorithm that
optimizes the thermal comfort of a group of users, while
simultaneously achieving energy savings. The algorithm is
model-free, in that it does not estimate the temperature at
which users feel comfortable. Instead, it iteratively changes
the temperature to compensate for user discomfort, simply by
increasing or decreasing the temperature when users become
too cold or hot, respectively.

A. Thermal Comfort

The American Society of Heating, Refrigerating and Air-
conditioning Engineers (ASHRAE) defines thermal satisfac-
tion to depend on both physiological and psychological factors,
which makes it difficult to measure through sensors [3]. A
popular method to measure thermal comfort is the industry-
standard Fanger’s PMV [14], a measure on a 7-point scale
between cold (-3) and hot (3). The method depends on six
variables that include person-dependent metabolic rate and
clothing level. In addition to being difficult to measure in an
inexpensive way, the literature shows that it does not perform
well in dynamic office environments [5] and does not model
people’s adaptability to thermal comfort [6]. We propose to
measure the thermal comfort directly and thus bypass the need
to estimate the comfort using indirect sensor inputs. This also
allows us to simplify the user input to three values: cold (-1),
neutral (0), and hot (1).

B. Comfort Data Fusion

It is a well known fact that people have different thermal
comfort preferences and larger groups of people find it more
difficult to agree on the optimal temperature in an office

Algorithm 1 Pseudo code of our HVAC control algorithm.
Parameters: Step, DriftStep, DriftEnabled
Input: SetpointTemp, OutdoorTemp, Votes, Occupancy
Output: HVAC Command

function CONTROL(Run every T minutes)
if Occupancy == Empty then

return HVAC PowerOff()
end if

netVote ← sum(Votes)
if netVote < 0 then

SetpointTemp = SetpointTemp - Step
else if netVote > 0 then

SetpointTemp = SetpointTemp + Step
else . Net vote is stable

if DriftEnabled then
if SetpointTemp > OutdoorTemp then

SetpointTemp = SetpointTemp - DriftStep
else

SetpointTemp = SetpointTemp + DriftStep
end if

end if
end if
return HVAC TempSet(SetpointTemp)

end function
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Fig. 3. Thermal comfort of a group of people at two different set-
points. Maximizing the number of comfortable people can leave many people
uncomfortable (plot a), while minimizing the average discomfort finds a
compromise (b).

setting. As an example, Figure 7 shows comfort zones of eight
users in our building that we calculated using empirical data.

There are two basic approaches to satisfy comfort prefer-
ences of a group of people. We can maximize the number of
comfortable people without regards for the comfort of the rest
of the group. Alternatively, we can find a compromise between
people that are uncomfortable by finding a temperature that
minimizes the overall discomfort, at the possible expense of
decreasing the number of people that are actually comfortable.

Figure 3a shows a hypothetical case when maximizing the
number of comfortable people leads to suboptimal results.
We show the temperature set-point with a horizontal line and
color-code the user comfort zones by blue, green, and red, for
users that feel cold, comfortable, and hot, respectively. The



control algorithm has two options. It can either satisfy the
three people at lower temperatures or the three people at higher
temperatures, leaving three people extremely uncomfortable.
The strategy shown in Fig. 3b finds a compromise that satisfies
only one person, but does not leave anyone at an extreme
discomfort.

Equalizing the extremes has another advantage in our set-
ting. Recall that our algorithm does not actually model the
comfort zones of people, i.e., it would only see the number
of people that are cold or hot (blue or red in Fig. 3), not
how much discomfort they experience. Balancing the office
temperature to achieve equilibrium can be done iteratively
without quantifying user comfort preferences.

Consequently, our algorithm first determines the overall
comfort of a group of users by summing their recent comfort
votes, and then changes the indoor temperature by a fixed
value (called Step) to compensate for the discomfort (see
Alg. 1). This algorithm minimizes thermal discomfort of a
group, without having to quantify the discomfort of each
individual.

C. Temperature Step Size

One of the important parameters of our HVAC control is
the value of Step, which defines by how much we change
the temperature set-point. Clearly, a small step will cause the
system react slowly to changing thermal preferences and might
cause unnecessary discomfort. Similarly, if the step is too
large, the system might fail to find a good compromise. For
example, if Step is larger than 2◦C in Fig. 3, the system
may oscillate between two extremes and never converge to
the optimal value.

Due to the limited information that we receive from users,
it is difficult to estimate the optimal value of Step in real
time. In addition, the step needs to consider system limitations,
such as the maximum rate of cooling and heating that HVAC
supports and the thermal inertia of the building. We treat Step
as a system parameter that can be fine-tuned during the HVAC
operation. We note that enforcing a more complex user input
(e.g., on the 7-point PMV scale) would help with determining
the optimal value of Step. However, the user input would
have to be normalized to different comfort perceptions of
individual users. By using the 3-point comfort scale, we
sacrifice some information content in user surveys, but benefit
from the input simplicity and avoid modeling of subjective
user preferences.

D. Maximizing Energy Savings

Our HVAC control algorithm places people directly in con-
trol of the temperature in their air-conditioning zone based on
their thermal comfort. However, our goal is also to maximize
energy savings related to HVAC by adapting to changing
occupancy and thermal comfort patterns in real time.

One way to save energy is to turn the HVAC off if an
office is unoccupied. This approach saves energy by starting
the HVAC when people arrive at work and by turning it
off when people leave for lunch or meetings. Our phone

application infers user occupancy implicitly from the user data
(whether people vote) and the control algorithm adapts to
changing occupancy in real time. The adaptive behavior of the
control algorithm also saves energy over systems with a fixed
temperature setting as it can operate at a lower (or higher)
temperatures based on occupant tolerances.

We achieve additional energy savings by relying on a simple
yet powerful concept. We let the indoor temperature drift
towards the outdoor temperature as long as it does not impact
the thermal comfort of occupants. We do this by adjusting the
HVAC set-point temperature; we therefore are not concerned
with the actual indoor temperature.

For example in Fig. 3, the temperature can vary by 0.5◦C
around the optimum (24◦C) without changing distribution
of the uncomfortable people. Figure 3b shows the optimal
temperature set-point of 24.5◦C that maximizes energy savings
in the summer.

We call this strategy Drift. The algorithm has one important
parameter, DriftStep, a temperature by which we change
the set-point when drifting towards ambient. DriftStep is
set at a lower value than Step as we want to prevent the
system from oscillating around the optimal temperature, which
would require frequent user input. We note that one important
advantage of the Drift algorithm is that it operates to favour
energy savings both in Summer (where the goal is to minimise
cooling) and in Winter (where minimal heating is desired).

One way to optimize our algorithm would be to stop Drift
once the optimal temperature is found and restart it only if the
office occupancy or thermal preferences change. We leave this
for future work and show in Sec. IV that Drift achieves large
energy savings at a relatively minor increase in the number of
votes.

IV. EVALUATION

We base our evaluation on one wing of an office building
at our campus. The office wing includes 20 people located
in 12 offices and one conference room (Fig. 5) and there are
two air-conditioning zones, one at each side of the building. It
is difficult to evaluate HVAC performance of different control
algorithms experimentally due to the complex logistics of such
experiments and day-to-day changes in office occupancy. In-
stead, we built a simulator that can replay empirical data from
historical traces, including office occupancy, indoor/outdoor
temperatures, thermal comfort of people, voting through a
smart-phone application, and thermal response of building
to HVAC actuation. We first describe the simulator, then
evaluate performance of our control algorithm, and finally
compare its performance to existing fixed-set-point HVAC
control strategies.

A. Simulation Engine

We built a simulator that uses empirical data to simulate
different HVAC control strategies in realistic scenarios. To
provide data for the simulator, we collected empirical data
from one of our buildings. We measured occupancy patterns
and thermal preferences of people, values of indoor and
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Fig. 4. Climate node for tem-
perature and occupancy sensing.

Fig. 5. Floorplan and sensor locations in
our building.

outdoor environmental parameters, thermal response of the
building, and thermal characteristics of the HVAC system. This
section provides a brief overview of the simulator and more
details can be found in [15].

1) Empirical Data: We deployed a wireless sensor network
to measure environmental parameters in our building. Data
from this network were used as the ground truth for our
simulations. We call our mote platform a personal climate
node (see Fig. 4). The platform was developed in-house around
a low-power Intel 8051 MCU and sub 1-GHz Nordic radio.
The climate node includes passive infrared (PIR), temperature,
and humidity sensors. The sensors self-organize in a wireless
mesh network and transmit data to a base station with one
minute period. We use office temperature measurements to
estimate thermal comfort of people and PIR sensors to estimate
office occupancy. We placed climate nodes at each person’s
desk to minimize the rate of false positives of PIR sensors.
We collected the data for a period of one year, capturing
environmental parameters during different weather seasons and
work schedules.

We also installed a PC application for surveying people
about their current thermal comfort on the PCs of all partic-
ipants. The application allows us to trigger surveys remotely
and saves responses in a database. We administered the surveys
over a three week period, asking participants to rank their
current comfort on the ASHRAE 7-point scale. Simultane-
ously, we were changing the HVAC temperatures across a wide
range, including uncomfortably hot and cold, so that we could
build detailed thermal comfort models for each individual.

Finally, we obtained access to our building control and man-
agement system for our HVAC. We were logging temperature
set points and duty cycles of heaters and air conditioning units
for all HVAC zones under study. Additionally, we changed
the indoor temperature through oBIX [1], a RESTful Web-
based interface to building control systems. We used the
HVAC control to obtain comprehensive data on users’ comfort
levels in the survey trials, but also to characterize the thermal
response of our building to different HVAC settings.

2) Empirical Models: For each participant, we built a ther-
mal comfort model by cross-referencing the office temperature
data from climate domes and thermal comfort surveys. A
response of -3 indicates a high level of discomfort due to

Fig. 6. Example of two users with different thermal preferences.

Fig. 7. Green lines show comfort zones of eight users in our building. We
inferred the zones from empirical data.

cold, while a value of +3 indicates a high level of discomfort
due to heat. Interviews with participants demonstrated that
a response in the range [-1, +1] was indicative of comfort,
see an example for two participants in Fig. 6. Data points
from survey responses are shown in blue. After some basic
filtering for outliers, we estimate the comfort limits of each
participant as red crosses in the figure. We show the resulting
comfort models for all our users with valid comfort data in
Figure 7. We do not consider the remaining users for whom
there was insufficient or inconsistent survey data. The models
show a high degree of correlation between the preferences
of individual participants. This observation suggests that it is
possible to deliver an internal temperature that is comfortable
for the majority of participants. Note that this modeling is
required for evaluation purposes only, for example, to simulate
thermal comfort of people at a given temperature. The HVAC
control algorithm presented in this paper remains model-free,
and the sensing apparatus described above does not form part
of a final deployment.

Fig. 8. Different thermal response of a building on different days.



Fig. 9. Indoor temperature for different temperature step size.

Our simulator also models thermal response of our building
at different HVAC settings. We use empirical data to model
the rate of indoor temperature change given the outdoor
temperature and the value of HVAC set-point, the duty-cycle
of HVAC given the indoor-outdoor temperature difference, and
decay of indoor temperature towards the ambient when HVAC
is turned off (see [15] for more details). These models allow
us to estimate the indoor temperature in our building and
the energy usage of HVAC under different control strategies.
We note that such analysis eliminates the need for any so-
phisticated modelling of building materials or infrastructure,
yet is capable of capturing complex temporal behaviour of
the building (see Figure 8) and provides a basis for realistic
evaluation of different building control algorithms. The fixed
control algorithm used as a baseline is evaluated within this
framework.

3) Simulation: The simulator uses comfort models derived
for each participant and generates smart-phone user comfort
input given the current temperature in the building. We simply
replay the historical data to simulate occupancy of individual
offices. The indoor temperature is simulated based on the
outdoor ambient temperature and the actions of the simulated
HVAC control algorithm. We evaluate 5 algorithms: fixed tem-
perature set-point algorithm at three levels (Fixed 21.5, 23, and
24.5), our adaptive model-free control algorithm (Ambient),
and our adaptive algorithm with ambient drift enabled (Drift).
The current control algorithm used in our building is Fixed
23.

B. Model-free Data Fusion

In this section, we discuss the selection of system pa-
rameters and the impact of their misconfiguration on HVAC
performance. We also evaluate the performance of our model-
free HVAC control algorithm in terms of adaptivity to different
weather seasons and different occupancy patterns.

1) Step size: We study the optimal setting of the Step
system parameter in a series of experiments in Fig. 9. Clearly,
if the step size is too small, the system is too slow in adapting
to changed conditions and the indoor temperature takes a long
time to reach comfortable temperatures. If the step is too
large, however, the system is not be able to find a comfortable

Fig. 10. Adaptive HVAC control with drift towards outdoor ambient
temperature. Ambient drift eventually causes the temperature to fall outside
the comfort zone of a person, which results in temperature being reset back
by the control algorithm.

temperature and oscillates around the temperatures that would
make majority of occupants comfortable. Another disadvan-
tage of the large step is that it does not let the control algorithm
to adjust the indoor temperature within the comfortable zone.
In the absence of the ambient drift technique, this might result
in high energy usage of HVAC.

We found that the value of 1◦C worked well in practice
in our deployments. The value is small enough to find tem-
peratures that make participants comfortable, while it allows a
fast response when office occupancy changes. Interestingly, the
rate of change of 1◦C per 30min is similar to a typical rate
of outdoor ambient temperature change in our climate zone
which suggests that this rate of change is naturally accepted
by people.

2) Adaptiveness: We ran the Drift version of our al-
gorithm on two days in different seasons and show that it
adapts well to different ambient temperatures (see Figure 10).
We can clearly see the two steps working together to find
the optimal temperature. First, the larger Step of 1◦C is
used to reach comfort zones of people fast and then the
DriftStep towards the ambient temperature to find energy-
optimal point within the comfort zone. As we have already
noted, a promising avenue for future work would be to detect
and pre-empt this step in order to establish a stable temperature
in the absence of occupancy changes.

Eventually, the ambient drift will push the indoor tempera-
ture outside the comfort zones of people. This results in people
providing additional feedback and reseting the temperature
back in the comfort zone. Careful analysis of plots in Fig. 10
shows that the temperature set-points used during the colder
day are lower on average than those on the warmer day, which
demonstrates that our HVAC control algorithm automatically
adjusts to different weather seasons.

To evaluate adaptiveness of our algorithm to changing
occupancy patterns we turned off the Drift mechanism and
show the indoor temperature in Fig. 11. We also plot the
office occupancy on the secondary y axis. We see that system
reacts at 7am by increasing indoor temperature in the morning
after the first person arrives at work. The system turns off
the HVAC while the person prepares morning tea at 8am as
shown by the indoor temperature drifting towards the ambient.
The temperature reaches a comfortable level after 9am, when
the majority of office occupants arrive at work. The system



Fig. 11. The vote-based HVAC control adapts to changing occupancy.

turns HVAC off second time during the lunch break, which
again results in higher indoor temperature due to the drift
towards ambient. As most occupants are comfortable at this
temperature, the system does not have to change it until people
leave work at 6pm. This second stable set-point is closer to the
ambient temperature, and thus saves more energy than would
be possible without considering occupancy.

C. Comparison to Fixed Temperature Control

This section explores the impact of our approach on HVAC
energy consumption and occupant comfort. We evaluate both
Adaptive and Drift variants of our approach and compare
the results to control algorithms that maintain fixed tempera-
ture. We use empirical data collected during 3 weeks in the
spring, where the temperature in the morning is generally
bellow the comfortable zone of most people, but it frequently
goes above that comfort zone during the day. Thus the HVAC
control needs to both heat (morning and evening) and cool
(day) the building throughout our experiments.

We evaluate energy consumption of HVAC in kWh and
also in terms of ◦C as a mean difference between the indoor
and ambient temperatures. The intuition is that the larger the
difference of indoor and outdoor temperature, the higher the
energy consumption. In practice, however, air-conditioning
and heating use different amount of energy and thus the
relationship might not hold in all weather seasons. We also
evaluate user comfort in terms of the deviation of the indoor
temperature from their comfort zone in ◦C and count the
number of votes that users provide on average.

Figure 12 compares the energy consumption of our ap-
proach with fixing HVAC set points at a given level throughout
the day. Both flavors of our approach reduce energy consump-
tion over fixed set points in terms of ◦C. Due to heating
being cheaper than air-conditioning in our building, the Fixed
24.5 strategy actually uses less energy in terms of kWh than
the Adaptive algorithm. However, the Drift approach saves a
significant amount of energy compared to all fixed strategies
in terms of both kWh and ◦C. Nearly 50% and 65% kWh of
energy can be saved over the most energy efficient (24.5) and

Fig. 12. Average daily energy consumption: voting-controlled HVAC reduces
energy usage by maintaining the indoor temperature closer to the ambient
temperature. The horizontal split on the energy consumption plot indicates
energy used due to air-conditioning (top) and heating (bottom).

Fig. 13. Average daily discomfort over 3 weeks:
both variants of voting-based HVAC control deliver
comfort performance that is only a fraction of a degree
different from optimal comfort levels.

Fig. 14. Voting
requirements: drift
approach requires
slightly more votes.

the most comfortable (23) fixed techniques.
Drift achieves its large energy reductions by exploiting

situations when the indoor temperature hovers around the
comfort equilibrium of occupants, and then switching off the
HVAC while the temperature drifts toward ambient. Once
that drift starts affecting comfort equilibrium, the HVAC is
then turned on again. This approach is particularly attractive
to commercial HVAC systems where switching cooling or
heating from a particular zone is an ON/OFF process and
does not involve significant mode switching costs because the
central system remains active throughout the day.

Figure 13 shows the resulting average deviation from com-
fort zones for all occupants in our building. While the fixed set
point approach with 21oC leads to about 0.7 degree deviation
from comfort zones on average, all other approaches appear
to cause between 0.15 and 0.3 oC deviation. We suggest that
this is practically imperceptible. Thus, our approach delivers
significant HVAC energy savings with nearly no impact of
occupant comfort.

A remaining question about our approach is the extent of
involvement that it requires from participants. Figure 14 shows
that the average number of votes for our approach ranges
between 4 and 6 votes per occupant per day, which we believe
is minimally inconvenient to users of the system. In particular,
the drift strategy requires approximately 1 vote per occupant
more per day than the adaptive strategy which is well worth



the achieved energy savings.

D. Evaluation Summary

Based on empirical data gathered from one of the buildings
on our campus, we were able to build thermal comfort models
of occupants and estimate various environmental parameters.
Using this information, we developed a simulator capable of
comparing the effect (inter alia, in terms of energy savings
and occupant comfort) of different control algorithms when
seeded with real data. The simulator was constructed such
that algorithms tested in it could be used without alteration as
control algorithms in the live system.

We focused our analysis on comparing three fixed set-point
control schemes – Fixed 21.5, Fixed 23, and Fixed 24.5 – to
two adaptive algorithms – Adaptive and Drift. Results from our
simulator showed that both flavours of our algorithm reduced
energy consumption relative to fixed set-points in terms of ◦C.
In the case of our building, the Drift approach saved 50-65%
energy compared to the fixed algorithms, with a negligible
impact on comfort.

This demonstrates the key advantage of our approach: by
utilising participatory sensing, we are able to obtain significant
energy savings within the bounds of occupant comfort. More-
over, we can achieve this result without the effort or expense
of modelling comfort directly.

V. DISCUSSION AND RELATED WORK

A. Model and Sensor Free HVAC Control

Our results show that model and sensor free HVAC control
can achieve at least 50% reduction in energy consumption with
minimal impact on thermal comfort. The participatory sensing
aspect of our approach is inspired by Thermovote [8], which
also uses human input as the primary information stream for
control decisions. Our system, however, uses only human input
for HVAC control, while Thermovote estimates average P.M.V
parameters for all occupants (except temperature, which is
measured), which is prone to errors resulting from individual
variations all these parameters.

In addition, our system requires only knowledge of the
actual (or expected) outdoor temperature in order to determine
a set-point. We do not measure the actual indoor temperature
or determine an offset based on actual mean vote, but rather
decide whether to increase or decrease the current set-point on
each iteration. This removes an important source of complexity
and potential error.

Finally, users of our system only need to indicate if they
are hot or cold rather than voting on the 7 point ASHRAE
scale, as is the case with Thermovote. A desirable feature in
Thermovote is its real-time calculation of the offset temper-
ature, which in our approach is the equivalent of adaptively
computing the step change in HVAC temperature set point
every cycle. We leave the exploration of this feature for future
work.

B. Voting Resolution

While moving away from the 7 point thermal comfort
scale provides simplicity, it also has inherent limitations in
its coarse-grained information content. It is not possible to
distinguish occupants that are slightly uncomfortable from
other occupants that may be extremely uncomfortable. The
current implementation only considers the most recent vote of
a user in any voting period. One option to extract information
on the severity of thermal discomfort is to consider the
frequency of votes, with the assumption that occupants who
are extremely uncomfortable will tend to vote more often. This
additional information would need to be balanced against the
obvious potential for abuse. Such a feature could also act as
a tiebreaker in deadlock voting scenarios where there is an
equal number of occupants who vote cold and hot. Currently,
our algorithm either maintains the current set point or drifts
towards ambient when the number of hot and cold occupants
is equal, as it aims to minimise the discomfort among all
occupants. Fine-tuning this aspect of the algorithm offers a
clear opportunity for improvement.

C. Learning Models

A major advantage of our approach is the absence of any
individual level parameter estimation, avoiding errors that
can arise from differences across people. While the use of
individual level models based on empirical data [4], [14]
has been shown to improve HVAC control, building these
individual level models is typically a labor-intensive and po-
tentially intrusive process for participants. An interesting area
for future work is to learn occupant comfort models over time,
by inferring the limits of their comfortable temperature zones
from their historical thermal comfort input. This would bring
models back to our approach based on empirical data rather
than blanket estimations of individual level parameters. One
important advantage of this approach would be to minimise
the number of user votes required, while still retaining the
advantages of on-demand participatory sensing.

D. Privacy, Security and Incentives

Privacy and incentives are key considerations for any par-
ticipatory sensing approach. Erickson et al. [8] indicate that
participants often readily contribute their thermal comfort
information on the 7 point ASHRAE scale, since this informa-
tion is not considered sensitive. Our HVAC control approach
requires only relative thermal comfort input from participants
(whether they are cold or hot), and avoids information capture
on their personal attributes, such as metabolism rate or clothing
insulation [14].

In terms of incentives, participants in our approach are
genuine stakeholders as the outcome of the HVAC voting
process will affect their thermal comfort. As such, we expect
that building occupants will have an intrinsic interest in voting
proactively when they experience thermal discomfort.

The use of participatory sensing to control a physical
system involves potential security issues, with the potential
for malicious users to attempt to steer the system toward an



undesirable state. For instance, malicious users may try to keep
voting that they are too hot on a summer day to keep pushing
the HVAC setpoint lower, which can cause both occupant
discomfort and higher energy consumption. We believe the
majority of malicious voting patterns can be detected and
filtered out at the central controller to avoid such situations
arising.
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